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1. The metric prefixes (micro, pico, nano, ...) are given for ready reference on the inside
front cover of the textbook (see also Table 1-2).

(a) Since 1 km=1x 10 mand 1 m=1x 10° zm,
Ikm =10’m = (10°m)(10° #m/m) =10’ um.

The given measurement is 1.0 km (two significant figures), which implies our result
should be written as 1.0 x 10° um.

(b) We calculate the number of microns in 1 centimeter. Since 1 cm = 10> m,
lem =107 m = (10°m)(10° #m/m) = 10* um.

We conclude that the fraction of one centimeter equal to 1.0 #m is 1.0 x 107,

(c) Since 1 yd = (3 ft)(0.3048 m/ft) = 0.9144 m,

1.0yd = (0.91m)(10° #m/m) = 9.1x 10° pm.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

2. (a) Using the conversion factors 1 inch = 2.54 cm exactly and 6 picas = 1 inch, we
obtain

0.80 cm = (0.80 cm) [21512‘:}1 j[i Plcisj ~ 1.9 picas.
. cm mc

(b) With 12 points = 1 pica, we have

0.80 cm = (0.80 cm) ( Linch j[6 p1cas)£12 pomts] ~ 23 points.

2.54 cm )\ 1inch 1 pica
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3. Using the given conversion factors, we find
(a) the distance d in rods to be

(4.0 furlongs)(201.168 m/furlong)

d = 4.0 furlongs = =160 rods,
5.0292 m/rod
(b) and that distance in chains to be
4.0 furl 201.168 m/furl
d= ( urlongs) m/furlong) = 40 chains.

20.117 m/chain
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4. The conversion factors 1 gry=1/10 line, 1 line=1/12 inchand 1 point = 1/72 inch
imply that

1 gry = (1/10)(1/12)(72 points) = 0.60 point.

Thus, 1 gry” = (0.60 point)* = 0.36 point’, which means that 0.50 gry*= 0.18 point>.
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5. Various geometric formulas are given in Appendix E.

(a) Expressing the radius of the Earth as

R =(6.37x10°m)(10” km/m) = 6.37 x 10° km,
its circumference is s = 27R =27(6.37 x 10’ km) =4.00x10* km.

(b) The surface area of Earth is 4 =4 R*> = 47 (6.37 x 10’ km)2 =5.10x10* km".

(c) The volume of Earth is V/ :43—7C R = % (6.37 x 10’ km)3 =1.08 x 10" km’.
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6. From Figure 1.6, we see that 212 S is equivalent to 258 W and 212 — 32 =180 S is
equivalent to 216 — 60 = 156 Z. The information allows us to convert S to W or Z.

(a) In units of W, we have

50.0 S = (50.0 S) (225182\2/

j: 60.8 W

(b) In units of Z, we have

50.0 S = (50.0 S) (%j =437
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7. The volume of ice is given by the product of the semicircular surface area and the
thickness. The area of the semicircle is 4 = nr2/2, where 7 is the radius. Therefore, the
volume is

V=—rz:z
2

where z is the ice thickness. Since there are 10° m in 1 km and 10* cm in 1 m, we have

3 2
r = (2000km) | 1M | [ 10761 _ 5000 % 10° em.
Ikm Im

In these units, the thickness becomes
10> cm

Im

2=3000m = (3000m) ( j =3000 x 10> cm

which yields 7 = = (2000 x 10° cm)2 (3000 % 10% cm) = 1.9 x 10* cm’.

(SR

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

8. We make use of Table 1-6.

(a) We look at the first (“cahiz”) column: 1 fanega is equivalent to what amount of cahiz?
We note from the already completed part of the table that 1 cahiz equals a dozen fanega.

Thus, 1 fanega = é cahiz, or 8.33 x 1072 cahiz. Similarly, “1 cahiz = 48 cuartilla” (in the

already completed part) implies that 1 cuartilla = % cahiz, or 2.08 x 107> cahiz.

Continuing in this way, the remaining entries in the first column are 6.94 x 10~ and
3.47x107.

(b) In the second (“fanega”) column, we similarly find 0.250, 8.33 x 1072, and 4.17 x 107>
for the last three entries.

(c) In the third (“cuartilla”) column, we obtain 0.333 and 0.167 for the last two entries.

(d) Finally, in the fourth (“almude”) column, we get % =0.500 for the last entry.

(e) Since the conversion table indicates that 1 almude is equivalent to 2 medios, our
amount of 7.00 almudes must be equal to 14.0 medios.

(f) Using the value (1 almude = 6.94 x 107 cahiz) found in part (a), we conclude that
7.00 almudes is equivalent to 4.86 x 10~ cahiz.

(g) Since each decimeter is 0.1 meter, then 55.501 cubic decimeters is equal to 0.055501
7.00

m® or 55501 cm®. Thus, 7.00 almudes = -, fanega= %(55501 cm’) =3.24 x 10* cm’.
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9. We use the conversion factors found in Appendix D.
1 acre- ft = (43,560 ft*)- ft = 43,560 ft’
Since 2 in. = (1/6) ft, the volume of water that fell during the storm is
V =(26 km*)(1/6 ft)=(26 km*)(3281ft/km)*(1/6 ft) = 4.66x10’ ft’.

Thus,
466 x 10" ft*

= Y =11 x 10’ acre- ft.
43560 x 10* ft’ /acre - ft
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10. A day is equivalent to 86400 seconds and a meter is equivalent to a million
micrometers, SO

(3.7m) (1 0° u m/m)
(14 day)(86400s/day)

= 3.1 um/s.
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11. A week is 7 days, each of which has 24 hours, and an hour is equivalent to 3600
seconds. Thus, two weeks (a fortnight) is 1209600 s. By definition of the micro prefix,
this is roughly 1.21 x 10'* s.
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12. The metric prefixes (micro (L), pico, nano, ...) are given for ready reference on the
inside front cover of the textbook (also, Table 1-2).

(a) 1 ucentury = (10*(’ century) 100y 365 day | [ 24 h }[60 min )_ 52.6 min.
1 century ly 1 day lh

(b) The percent difference is therefore

52.6 min — 50 min
52.6 min

= 4.9%.
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13. (a) Presuming that a French decimal day is equivalent to a regular day, then the ratio
of weeks is simply 10/7 or (to 3 significant figures) 1.43.

(b) In a regular day, there are 86400 seconds, but in the French system described in the
problem, there would be 10° seconds. The ratio is therefore 0.864.
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14. We denote the pulsar rotation rate f (for frequency).

B 1 rotation
1.55780644887275x 107 s

f

(a) Multiplying f by the time-interval ¢ = 7.00 days (which is equivalent to 604800 s, if
we ignore significant figure considerations for a moment), we obtain the number of
rotations:

B 1 rotation
1.55780644887275 x 107 s

] (604800 s) = 388238218.4

which should now be rounded to 3.88 x 10° rotations since the time-interval was
specified in the problem to three significant figures.

(b) We note that the problem specifies the exact number of pulsar revolutions (one

million). In this case, our unknown is ¢, and an equation similar to the one we set up in
part (a) takes the form N = f#, or

1x10° = ( 1 rotation j ;

1.55780644887275 x 107 s

which yields the result ¢t = 1557.80644887275 s (though students who do this calculation
on their calculator might not obtain those last several digits).

(c) Careful reading of the problem shows that the time-uncertainty per revolution is
+3x107""s . We therefore expect that as a result of one million revolutions, the
uncertainty should be (+3x107"7)(1x10%)= £3x107"'s.
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15. The time on any of these clocks is a straight-line function of that on another, with
slopes # 1 and y-intercepts # 0. From the data in the figure we deduce

2 594 ; 33 662

t ) == )
cC 7t 77 " 40t s
These are used in obtaining the following results.
(a) We find
t’ -3

B_t3_40 (¢, —1,)=495s

when ¢4 — 14 = 600 s.

(b) We obtain ¢/ — t. = % (1 —t5) = % (495) = 141 s.

(c) Clock B reads tz = (33/40)(400) — (662/5) = 198 s when clock A4 reads ¢, = 400 s.

(d) From tc =15 = (2/7)tp + (594/7), we get tp = —245 s.
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16. Since a change of longitude equal to 360° corresponds to a 24 hour change, then one
expects to change longitude by 360°/24 =15° before resetting one's watch by 1.0 h.
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17. None of the clocks advance by exactly 24 h in a 24-h period but this is not the most
important criterion for judging their quality for measuring time intervals. What is
important is that the clock advance by the same amount in each 24-h period. The clock
reading can then easily be adjusted to give the correct interval. If the clock reading jumps
around from one 24-h period to another, it cannot be corrected since it would impossible
to tell what the correction should be. The following gives the corrections (in seconds) that
must be applied to the reading on each clock for each 24-h period. The entries were
determined by subtracting the clock reading at the end of the interval from the clock
reading at the beginning.

CLOCK Sun. Mon. Tues. Wed. Thurs. | Fri.
-Mon. -Tues. -Wed. -Thurs. -Fri. -Sat.
A -16 -16 -15 -17 —-15 -15
B -3 +5 -10 +5 +6 -7
C -58 —58 —58 —58 —58 -58
D +67 +67 +67 +67 +67 +67
E +70 +55 +2 +20 +10 +10

Clocks C and D are both good timekeepers in the sense that each is consistent in its daily
drift (relative to WWF time); thus, C and D are easily made “perfect” with simple and
predictable corrections. The correction for clock C is less than the correction for clock D,
so we judge clock C to be the best and clock D to be the next best. The correction that
must be applied to clock A is in the range from 15 s to 17s. For clock B it is the range
from -5 s to +10 s, for clock E it is in the range from -70 s to -2 s. After C and D, A has
the smallest range of correction, B has the next smallest range, and E has the greatest
range. From best to worst, the ranking of the clocks is C, D, A, B, E.
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18. The last day of the 20 centuries is longer than the first day by

(20 century) (0.001 s/century) = 0.02 s.

The average day during the 20 centuries is (0 + 0.02)/2 = 0.01 s longer than the first day.
Since the increase occurs uniformly, the cumulative effect 7'is

T = (average increase in length of a day)(number of days)

_[0.01s)(365.25 day (2000 y)
day y Y

=7305s

or roughly two hours.
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19. When the Sun first disappears while lying down, your line of sight to the top of the
Sun is tangent to the Earth’s surface at point A shown in the figure. As you stand,
elevating your eyes by a height h, the line of sight to the Sun is tangent to the Earth’s
surface at point B.

Let d be the distance from point B to your eyes. From Pythagorean theorem, we have
A +r’=(r+h)’ =r +2rh+h’

or d* =2rh+h*,where r is the radius of the Earth. Since » > &, the second term can be

dropped, leading to d° = 2rh. Now the angle between the two radii to the two tangent
points A and B is 6, which is also the angle through which the Sun moves about Earth
during the time interval # = 11.1 s. The value of & can be obtained by using

0 t

360° 24 h
This yields
(360°)(11.1s)

= : — =0.04625°.
(24 h)(60 min/h)(60 s/min)

Using d =rtan@, we have d* =r”tan* @ =2rh, or

2h
r = )
tan” @

Using the above value for &and & = 1.7 m, we have » =5.2x10° m.
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20. The density of gold is

p="1_19328 1935 gom’.

V  lem®

(a) We take the volume of the leaf to be its area 4 multiplied by its thickness z. With
density p=19.32 g/cm’ and mass m = 27.63 g, the volume of the leaf is found to be

v ="~ 1430 cm’.

P
We convert the volume to SI units:
1 3
y=(1.430cm’) | ———| =1.430x10° m’.
100 cm

Since V' = Az with z =1 x 10" m (metric prefixes can be found in Table 1-2), we obtain

-6 3
JRSCEILI VAR, dupypv
1x10° m

(b) The volume of a cylinder of length ¢ is V' = A¢ where the cross-section area is that of
a circle: 4 = m?. Therefore, with = 2.500 x 10°° m and ¥ = 1.430 x 10™° m?, we obtain

(= Lz =7.284x10* m=72.84 km.
r
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21. We introduce the notion of density:

_ m
P=y
and convert to ST units: 1 g=1x 10~ kg.

(a) For volume conversion, we find 1 cm® = (1 x 10™”m)’ = 1 x 10°m’. Thus, the density
in kg/m’ is

-3 3
1g/cm3=(ng(lo kgj( — j=1x103kg/m3.

cm’ g 10° m’
Thus, the mass of a cubic meter of water is 1000 kg.

(b) We divide the mass of the water by the time taken to drain it. The mass is found from
M = pV (the product of the volume of water and its density):

M = (5700 m’) (1x 10’ kg/m’) = 5.70 x 10° kg.

The time is # = (10h)(3600 s/h) = 3.6 x 10*s, so the mass flow rate R is

6
R:%:5.70x104kg:158kg/8.
t  3.6x10's
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22. (a) We find the volume in cubic centimeters

3
] =731%x10°cm’

3
193 gal = (195 gal) (231 in Mz.54cm

1 gal lin

and subtract this from 1 x 10° cm’ to obtain 2.69 x 10°> cm’. The conversion gal — in’ is
given in Appendix D (immediately below the table of Volume conversions).

(b) The volume found in part (a) is converted (by dividing by (100 cm/m)*) to 0.731 m’,
which corresponds to a mass of

(1000 kg/m’) (0.731 m*)= 731 kg

using the density given in the problem statement. At a rate of 0.0018 kg/min, this can be
filled in

731kg

= 406%x10°min=0.77y
0.0018 kg/min

after dividing by the number of minutes in a year (365 days)(24 h/day) (60 min/h).
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23. If Mg is the mass of Earth, m is the average mass of an atom in Earth, and N is the
number of atoms, then Mz = Nm or N = Mg/m. We convert mass m to kilograms using
Appendix D (1 u=1.661 x 107’ kg). Thus,

24
N=Ms _ 598 x 10 lf ~ 9.0 x 10%.
m (40 u) (L1661 x 10~ kg/u)
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24. (a) The volume of the cloud is (3000 m)z(1000 m)* = 9.4 x 10° m’. Since each cubic
meter of the cloud contains from 50 x 10° to 500 x 10°® water drops, then we conclude
that the entire cloud contains from 4.7 x 10" to 4.7 x 10" drops. Since the volume of

each drop is % (10 x 10" °m)’ = 4.2 x 107> m’, then the total volume of water in a cloud

is from 2x10° to 2x10* m’.

(b) Using the fact that 1 L=1x10’cm’ =1x10"m’, the amount of water estimated in
part (a) would fill from 2x10° to 2x10 bottles.

(c) At 1000 kg for every cubic meter, the mass of water is from two million to twenty
million kilograms. The coincidence in numbers between the results of parts (b) and (c)

of this problem is due to the fact that each liter has a mass of one kilogram when water is
at its normal density (under standard conditions).
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25. We introduce the notion of density, p=m/V , and convert to SI units: 1000 g =1 kg,
and 100 cm =1 m.

(a) The density p of a sample of iron is

3
p= (7.87 g/cm3) [l(l)Oli)ggj [lolorrclmJ =7870 kg/m’.

If we ignore the empty spaces between the close-packed spheres, then the density of an
individual iron atom will be the same as the density of any iron sample. That is, if M is
the mass and V is the volume of an atom, then

—26
y=M_ 227x10 kg3=1.18><10‘29 m’.
p  71.87x10° kg/m

(b) We set V' = 4nR*/3, where R is the radius of an atom (Appendix E contains several
geometry formulas). Solving for R, we find

1/3
B3 (3(1.18x107% m?
R:(3—Vj —[( )J =141x10" m.

41 41

The center-to-center distance between atoms is twice the radius, or 2.82 X 107" m.
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26. If we estimate the “typical” large domestic cat mass as 10 kg, and the “typical” atom
(in the cat) as 10 u = 2 x 107%° kg, then there are roughly (10 kg)/( 2 x 107° kg) = 5 x
10* atoms. This is close to being a factor of a thousand greater than Avogradro’s
number. Thus this is roughly a kilomole of atoms.
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27. According to Appendix D, a nautical mile is 1.852 km, so 24.5 nautical miles would
be 45.374 km. Also, according to Appendix D, a mile is 1.609 km, so 24.5 miles is
39.4205 km. The difference is 5.95 km.
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28. The metric prefixes (micro (&), pico, nano, ...) are given for ready reference on the
inside front cover of the textbook (see also Table 1-2). The surface area 4 of each grain
of sand of radius » = 50 #m = 50 x 10° m is given by 4 = 42(50 x 10°)* = 3.14 x 10
m” (Appendix E contains a variety of geometry formulas). We introduce the notion of
density, p=m/V , so that the mass can be found from m = pV, where p = 2600 kg/m3.

Thus, using V' = 47m°/3, the mass of each grain is

3
5 47 (50x 10 m
m =pV=p(47;r j:(%oo kgj ( ) 136 x 107 k.

m 3
We observe that (because a cube has six equal faces) the indicated surface area is 6 m”.
The number of spheres (the grains of sand) N that have a total surface area of 6 m” is
given by

6 m’

= —— =1.91x10".
3.14x107 m

Therefore, the total mass M is M = Nm = (1.91 X 108) (1.36 x 107 kg) =0.260 kg.
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29. The volume of the section is (2500 m)(800 m)(2.0 m) = 4.0 x 10° m’. Letting “d”
stand for the thickness of the mud after it has (uniformly) distributed in the valley, then
its volume there would be (400 m)(400 m)d. Requiring these two volumes to be equal,
we can solve for d. Thus, d =25 m. The volume of a small part of the mud over a patch
of area of 4.0 m” is (4.0)d = 100 m’. Since each cubic meter corresponds to a mass of
1900 kg (stated in the problem), then the mass of that small part of the mud is
1.9x10° kg.
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30. To solve the problem, we note that the first derivative of the function with respect to
time gives the rate. Setting the rate to zero gives the time at which an extreme value of
the variable mass occurs; here that extreme value is a maximum.

(a) Differentiating m(t) = 5.00¢** —3.00¢ +20.00 with respect to ¢ gives

am _ 4.00r°% ~3.00.

dt
The water mass is the greatest when dm /dt =0, or at ¢ =(4.00/3.00)""** =4.21s.
(b) At t =4.21s, the water mass is
m(t=4.21s)=5.00(4.21)"* -3.00(4.21)+20.00=23.2 g.

(c) The rate of mass change at r=2.00s is

=[4.00(2.00) "> ~3.00 | g/s = 0.48 g/s = 0438 ._Lke  60s

1=2.00s s 1000 g 1 min
=2.89%107 kg/min.

dm
dt

(d) Similarly, the rate of mass change at £ =5.00s is

~[4.00(5.00)"2 ~3.00] g/s =0.101 g/s = ~0.101 £. <& 0%
1=2.00s s 1000 g 1 min

=—-6.05x10" kg/min.

dm
dt
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31. The mass density of the candy is

_m_ % =4.00x107" g/mm3 =4.00x107" kg/cm3.

_V_SO.Omm3_

If we neglect the volume of the empty spaces between the candies, then the total mass of
the candies in the container when filled to height 42 is M =pAdh, where
A=(14.0 cm)(17.0 cm)=238 cm” is the base area of the container that remains
unchanged. Thus, the rate of mass change is given by

dﬁj - d“; fh) = pA% = (4.00x10™* kg/em®)(238 cm?)(0.250 cm/s)

=0.0238 kg/s = 1.43 kg/min.
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32. Table 7 can be completed as follows:

(a) It should be clear that the first column (under “wey”) is the reciprocal of the first
row — so that % =0.900, f—o =7.50 x 1072, and so forth. Thus, 1 pottle = 1.56 x 1073 wey

and 1 gill = 8.32 x 107® wey are the last two entries in the first column.

(b) In the second column (under “chaldron”), clearly we have 1 chaldron = 1 caldron (that
is, the entries along the “diagonal” in the table must be 1’s). To find out how many

chaldron are equal to one bag, we note that 1 wey = 10/9 chaldron = 40/3 bag so that 11—2

chaldron = 1 bag. Thus, the next entry in that second column is % =833 x 107
Similarly, 1 pottle = 1.74 x 10~ chaldron and 1 gill = 9.24 x 10~ chaldron.

(c) In the third column (under “bag”), we have 1 chaldron = 12.0 bag, 1 bag = 1 bag, 1
pottle =2.08 x 107 bag, and 1 gill=1.11 x 10~ bag.

(d) In the fourth column (under “pottle”), we find 1 chaldron = 576 pottle, 1 bag = 48
pottle, 1 pottle = 1 pottle, and 1 gill = 5.32 x 10~ pottle.

¢) In the last column (under “gill”), we obtain 1 chalaron = 1.08 X 111, ag =9.
In the 1 1 der “gill” btain 1 chald 1.08 x 10° gill, 1 bag = 9.02
x 10 gill, 1 pottle = 188 gill, and, of course, 1 gill = 1 gill.

() Using the information from part (c), 1.5 chaldron = (1.5)(12.0) = 18.0 bag. And since
each bag is 0.1091 m’ we conclude 1.5 chaldron = (18.0)(0.1091) = 1.96 m’.
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33. The first two conversions are easy enough that a formal conversion is not especially
called for, but in the interest of practice makes perfect we go ahead and proceed formally:

2 peck
1 tuffet

(a) 11 tuffets = (11 tuffets) ( J = 22 pecks.

0.50 Imperial bushel
1 tuffet

(b) 11 tuffets = (11 tuffets) [ j = 5.5 Imperial bushels .

36.3687 L
1 Imperial bushel

(¢) 11 tuffets = (5.5 Imperial bushel) [ J ~200 L.
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34. (a) Using the fact that the area A of a rectangle is (width) X (length), we find

A (3.00acre) + (25.0perch)(4.00 perch)

(40 perch)(4 perch)

lacre

total —

(3.00 acre [ j + 100 perch?
= 580 perch®.

We multiply this by the perch® — rood conversion factor (1 r0od/40 perch?) to obtain the
answer: Aiota = 14.5 roods.

(b) We convert our intermediate result in part (a):

2
16'5&] =1.58x10° ft*.

A =(580 perch’
total ( p ) (lperch

Now, we use the feet — meters conversion given in Appendix D to obtain

Im
32811t

A

2
o = (1.38 X107 i) ( ] =1.47 x10* m?
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35. (a) Dividing 750 miles by the expected “40 miles per gallon” leads the tourist to
believe that the car should need 18.8 gallons (in the U.S.) for the trip.

(b) Dividing the two numbers given (to high precision) in the problem (and rounding off)
gives the conversion between U.K. and U.S. gallons. The U.K. gallon is larger than the
U.S gallon by a factor of 1.2. Applying this to the result of part (a), we find the answer
for part (b) is 22.5 gallons.
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36. The customer expects a volume V; = 20 X 7056 in® and receives V>, =20 % 5826 in3,
the difference being AV =V, —=V,=24600 in’, or

3
AV = (24600 in®) | 22250 ( 1L 3) = 403L
1 inch 1000 cm

where Appendix D has been used.
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37. (a) Using Appendix D, we have 1 ft = 0.3048 m, 1 gal =231 in. >, and 1 in.* = 1.639 x
107 L. From the latter two items, we find that 1 gal = 3.79 L. Thus, the quantity 460
ft*/gal becomes

P 2
460 ftz/gal=(460ft j( L m ] ( ! gal j:u.s m’/L.

gal 3281t ) (3.79L

(b) Also, since 1 m’ is equivalent to 1000 L, our result from part (a) becomes

2
11.3m2/L:(11'im j(lOOOsz 1.13%x 10 m™".

Im’

¢) The inverse of the original quantity is (460 ft*/gal)™' =2.17 x 10~ gal/ft>.
g q y g g

(d) The answer in (c) represents the volume of the paint (in gallons) needed to cover a
square foot of area. From this, we could also figure the paint thickness [it turns out to be
about a tenth of a millimeter, as one sees by taking the reciprocal of the answer in part

(b)].
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38. The total volume ¥ of the real house is that of a triangular prism (of height # = 3.0 m
and base area A = 20 x 12 = 240 m®) in addition to a rectangular box (height 2" = 6.0 m
and same base). Therefore,

V:%;,AJrh’A:(ngh’]A=1800m3.

(a) Each dimension is reduced by a factor of 1/12, and we find

3
Vi = (1800 m’) (%) ~ 1.0 m’.

(b) In this case, each dimension (relative to the real house) is reduced by a factor of 1/144.
Therefore,

3
V v = (1800 ) (ﬁ) ~6.0x 10 m’.
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39. Using the (exact) conversion 2.54 cm = 1 in. we find that 1 ft = (12)(2.54)/100 =
0.3048 m (which also can be found in Appendix D). The volume of a cord of wood is 8 X
4 x 4 = 128 ft’, which we convert (multiplying by 0.3048") to 3.6 m’. Therefore, one
cubic meter of wood corresponds to 1/3.6 = 0.3 cord.
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40. (a) In atomic mass units, the mass of one molecule is (16 + 1 + 1)u = 18 u. Using Eq.
1-9, we find
1.6605402 x 107" kg

lu

} =3.0x10kg.

18u= (18u)(

(b) We divide the total mass by the mass of each molecule and obtain the (approximate)
number of water molecules:

_ 1.4x10"

“Soxiow -0 x10%
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41. (a) The difference between the total amounts in “freight” and “displacement” tons,
(8 —7)(73) = 73 barrels bulk, represents the extra M&M’s that are shipped. Using the
conversions in the problem, this is equivalent to (73)(0.1415)(28.378) =293 U.S. bushels.

(b) The difference between the total amounts in “register” and “displacement” tons,
(20 = 7)(73) = 949 barrels bulk, represents the extra M&M’s are shipped. Using the

conversions in the problem, this is equivalent to (949)(0.1415)(28.378) = 3.81 x 10° U.S.
bushels.
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42. (a) The receptacle is a volume of (40 cm)(40 cm)(30 cm) = 48000 em’ =48 L =
(48)(16)/11.356 = 67.63 standard bottles, which is a little more than 3 nebuchadnezzars
(the largest bottle indicated). The remainder, 7.63 standard bottles, is just a little less
than 1 methuselah. Thus, the answer to part (a) is 3 nebuchadnezzars and 1 methuselah.

(b) Since 1 methuselah.= 8 standard bottles, then the extra amount is 8 — 7.63 = 0.37
standard bottle.

(c) Using the conversion factor 16 standard bottles = 11.356 L, we have

=0.26 L.

0.37 standard bottle = (0.37 standard bottle)( 11.356L j

16 standard bottles
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43. The volume of one unit is 1 cm® = 1 x 107°m’, so the volume of a mole of them is
6.02 x 102 cm’ = 6.02 x 10'" m’. The cube root of this number gives the edge length:
8.4x10° m®. This is equivalent to roughly 8 x 10* kilometers.
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44. Equation 1-9 gives (to very high precision!) the conversion from atomic mass units to
kilograms. Since this problem deals with the ratio of total mass (1.0 kg) divided by the
mass of one atom (1.0 u, but converted to kilograms), then the computation reduces to
simply taking the reciprocal of the number given in Eq. 1-9 and rounding off
appropriately. Thus, the answer is 6.0 x 10%°.
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45. We convert meters to astronomical units, and seconds to minutes, using

1000 m =1 km
1 AU =1.50 x 10® km

60 s =1 min.
Thus, 3.0 x 10® m/s becomes

30x10° m|[ 1km AU 60 s
S 1000 m | [1.50 x 10* km

min

] =0.12 AU/min.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

46. The volume of the water that fell is

2
1000 m 0.0254 m
V =(26 km?) (2.0 in.) = (26 km? 20in.) | ———
(26 k07) (20in)= 26 k) O | 201 (20254

= (26 x10° m*) (0.0508 m)
=1.3x10° m’.

We write the mass-per-unit-volume (density) of the water as:

m

p=;=1><103 kg/m’.

The mass of the water that fell is therefore given by m = pV-

m=(1x10° kg/m’) (1.3x10° m’)=1.3x 10’ kg.
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47. A million milligrams comprise a kilogram, so 2.3 kg/week is 2.3 x 10° mg/week.
Figuring 7 days a week, 24 hours per day, 3600 second per hour, we find 604800 seconds
are equivalent to one week. Thus, (2.3 X 10° mg/week)/(604800 s/week) = 3.8 mg/s.
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48. The mass of the pig is 3.108 slugs, or (3.108)(14.59) = 45.346 kg. Referring now to
the corn, a U.S. bushel is 35.238 liters. Thus, a value of 1 for the corn-hog ratio would
be equivalent to 35.238/45.346 = 0.7766 in the indicated metric units. Therefore, a value
of 5.7 for the ratio corresponds to 5.7(0.777) = 4.4 in the indicated metric units.
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49. Two jalapefio peppers have spiciness = 8000 SHU, and this amount multiplied by 400
(the number of people) is 3.2 x10° SHU, which is roughly ten times the SHU value for a

single habanero pepper. More precisely, 10.7 habanero peppers will provide that total
required SHU value.
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50. The volume removed in one year is

V=(75%x10"m*) (26 m) =2 x 10’ m’

1 km
1000 m

3
which we convert to cubic kilometers: V' = (2 x 107 m3) ( } = 0.020 km’.
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51. The number of seconds in a year is 3.156 x 10’. This is listed in Appendix D and
results from the product

(365.25 day/y) (24 h/day) (60 min/h) (60 s/min).

(a) The number of shakes in a second is 10%; therefore, there are indeed more shakes per
second than there are seconds per year.

(b) Denoting the age of the universe as 1 u-day (or 86400 u-sec), then the time during
which humans have existed is given by

86400 u -sec

= 8.6 u-sec.
1 u-day

which may also be expressed as (107 u-day) (
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52. Abbreviating wapentake as “wp” and assuming a hide to be 110 acres, we set up the
ratio 25 wp/11 barn along with appropriate conversion factors:

100 hide \ (110 acre \ [ 4047 m?
(25 Wp)( 1 wp )( 1 hide )( lacre

(11 barn) (1“0728 mz)

) ~1x10%.

1 barn
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53. (a) Squaring the relation 1 ken = 1.97 m, and setting up the ratio, we obtain

lken® 197° m®

2

= 3.88.

Im> 1m
(b) Similarly, we find

1 ken® _ 197° m’

3

= = 7.65.
1m Il m

(c) The volume of a cylinder is the circular area of its base multiplied by its height. Thus,
zr* h = 7£(3.00)" (5.50) = 156 ken”.

(d) If we multiply this by the result of part (b), we determine the volume in cubic meters:
(155.5)(7.65) = 1.19 x 10° m’.
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54. The mass in kilograms is
. i 16tahil | 10ch 10 h )
(28.9 p1culs) lOng 6 a‘. 1 Oc ste 0 hoon |( 03779¢g
I picul 1gin 1 tahil 1 chee 1 hoon

which yields 1.747 x 10° g or roughly 1.75x 10° kg.
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55. In the simplest approach, we set up a ratio for the total increase in horizontal depth x
(where Ax = 0.05 m is the increase in horizontal depth per step)

X = Ny Ax =(%J(0.0S m)=12m.

However, we can approach this more carefully by noting that if there are N = 4.57/.19 =
24 rises then under normal circumstances we would expect N — 1 = 23 runs (horizontal
pieces) in that staircase. This would yield (23)(0.05 m) = 1.15 m, which - to two
significant figures - agrees with our first result.
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56. Since one atomic mass unit is 1u=1.66x10"* g (see Appendix D), the mass of one

mole of atoms is about m = (1.66x107>* g)(6.02x10”) =1g. On the other hand, the mass
of one mole of atoms in the common Eastern mole is

Therefore, in atomic mass units, the average mass of one atom in the common Eastern
mole is
m’ 10g -23
—=—"—=1.66X10""g=10u.
N, 6.02x10

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

57. (a) When 6is measured in radians, it is equal to the arc length s divided by the radius
R. For a very large radius circle and small value of 6, such as we deal with in Fig. 1-9,
the arc may be approximated as the straight line-segment of length 1 AU. First, we
convert &= 1 arcsecond to radians:

1 arcminute 1° 27 radian
(1 arcsecond) ,
60 arcsecond | | 60 arcminute 360°

which yields 8= 4.85 x 10~ rad. Therefore, one parsec is

:&: 2.06 x 10° AU.

R)
°T 9 485x10°

Now we use this to convert R =1 AU to parsecs:

R = (1 AU) e 1 _49%10° pe.
2.06 x 10° AU

(b) Also, since it is straightforward to figure the number of seconds in a year (about 3.16
x 107 s), and (for constant speeds) distance = speed x time, we have

11y = (186,000 mi/s) (3.16 x 107 s) 5.9 x 10'"* mi

which we convert to AU by dividing by 92.6 x 10° (given in the problem statement),
obtaining 6.3 x 10* AU. Inverting, the resultis 1 AU=1/6.3 x 10*=1.6 x 107 ly.
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58. The volume of the filled container is 24000 cm’ = 24 liters, which (using the
conversion given in the problem) is equivalent to 50.7 pints (U.S). The expected number
is therefore in the range from 1317 to 1927 Atlantic oysters. Instead, the number
received is in the range from 406 to 609 Pacific oysters. This represents a shortage in the
range of roughly 700 to 1500 oysters (the answer to the problem). Note that the
minimum value in our answer corresponds to the minimum Atlantic minus the maximum
Pacific, and the maximum value corresponds to the maximum Atlantic minus the
minimum Pacific.
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59. (a) For the minimum (43 c¢m) case, 9 cubit converts as follows:

9 cubit :(9cubit)((l)'4?;_ltlj: 3.9m.
Ccub1

And for the maximum (43 cm) case we obtain

9cubit = (9 cubit)(?'sir‘l:j =48m
cubi

(b) Similarly, with 0.43 m — 430 mm and 0.53 m — 530 mm, we find 3.9 x 10> mm and
4.8 x 10° mm, respectively.

(c) We can convert length and diameter first and then compute the volume, or first
compute the volume and then convert. We proceed using the latter approach (where d is
diameter and / is length).

3
= %Edz = 28 cubit’ = (28 cubit’ ) [0'43m] —22m’.

cylinder, min

1 cubit

Similarly, with 0.43 m replaced by 0.53 m, we obtain Vyiinder, max = 4.2 m.
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60. (a) We reduce the stock amount to British teaspoons:

1 breakfastcup =2 X 8 X 2 X 2 = 64 teaspoons
l teacup =8 X 2 X 2 =32 teaspoons
6 tablespoons = 6 X 2 X 2 = 24 teaspoons

1 dessertspoon = 2 teaspoons

which totals to 122 British teaspoons, or 122 U.S. teaspoons since liquid measure is being
used. Now with one U.S cup equal to 48 teaspoons, upon dividing 122/48 = 2.54, we find
this amount corresponds to 2.5 U.S. cups plus a remainder of precisely 2 teaspoons. In
other words,

122 U.S. teaspoons = 2.5 U.S. cups + 2 U.S. teaspoons.

(b) For the nettle tops, one-half quart is still one-half quart.

(c) For the rice, one British tablespoon is 4 British teaspoons which (since dry-goods
measure is being used) corresponds to 2 U.S. teaspoons.

(d) A British saltspoon is 5 British teaspoon which corresponds (since dry-goods
measure is again being used) to 1 U.S. teaspoon.
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1. We use Eq. 2-2 and Eq. 2-3. During a time #. when the velocity remains a positive
constant, speed is equivalent to velocity, and distance is equivalent to displacement, with
Ax=vt,.

(a) During the first part of the motion, the displacement is Ax; = 40 km and the time
interval is

1 __(@0km) . aap
(30 km/ h)

During the second part the displacement is Ax, = 40 km and the time interval is

(40 km)

,=———— =067h.
(60 km/ h)

Both displacements are in the same direction, so the total displacement is
Ax = Ax; + Ax; =40 km + 40 km = 80 km.
The total time for the trip is t = #; + £, = 2.00 h. Consequently, the average velocity is

L (80 km)
™2 (2.0 h)

=40 km/h.

(b) In this example, the numerical result for the average speed is the same as the average
velocity 40 km/h.

(c) As shown below, the graph consists of two contiguous line segments, the first having
a slope of 30 km/h and connecting the origin to (¢;, x;) = (1.33 h, 40 km) and the second
having a slope of 60 km/h and connecting (#;, x;) to (¢, x) = (2.00 h, 80 km). From the
graphical point of view, the slope of the dashed line drawn from the origin to (7, x)
represents the average velocity.

& k)

1

bl

i
2
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2. Average speed, as opposed to average velocity, relates to the total distance, as opposed
to the net displacement. The distance D up the hill is, of course, the same as the distance
down the hill, and since the speed is constant (during each stage of the motion) we have
speed = D/t. Thus, the average speed is

Dup +Dd0wn _ 2D

tup + tdown 2 + D

vup vdown

which, after canceling D and plugging in vy, = 40 km/h and vgown = 60 km/h, yields 48
km/h for the average speed.
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3. The speed (assumed constant) is v = (90 km/h)(1000 m/km)/ (3600 s/h) = 25 m/s. Thus,
in 0.50 s, the car travels (0.50 s)(25 m/s) = 13 m.
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4. Huber’s speed is
vo= (200 m)/(6.509 s)=30.72 m/s = 110.6 km/h,

where we have used the conversion factor 1 m/s = 3.6 km/h. Since Whittingham beat

Huber by 19.0 km/h, his speed is vi=(110.6 km/h + 19.0 km/h)=129.6 km/h, or 36 m/s (1

km/h = 0.2778 m/s). Thus, the time through a distance of 200 m for Whittingham is

_ ﬂ 200 m
v, 36 m/s

At =5.554s.
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5. Using x = 3t — 47 + £ with SI units understood is efficient (and is the approach we will
use), but if we wished to make the units explicit we would write

x =G m/s)— (4 /s + (1 m/s )z

We will quote our answers to one or two significant figures, and not try to follow the
significant figure rules rigorously.

(a) Pluggingint=1syieldsx=3-4+1=0.

(b) With £ =2 s we get x = 3(2) — 4(2)*+(2)*= -2 m.

(c) Witht=3 s we have x =0 m.

(d) Plugging int =4 s gives x = 12 m.

For later reference, we also note that the position at =0 is x = 0.

(e) The position at ¢ = 0 is subtracted from the position at # = 4 s to find the displacement
Ax =12 m.

(f) The position at ¢+ = 2s is subtracted from the position at ¢+ = 4s to give the
displacement Ax = 14 m. Eq. 2-2, then, leads to

Ax 14m

Vag =~ = =7 m/s.
At 2s

(g) The horizontal axis is 0 <z < 4 with SI units understood.

Not shown is a straight line drawn from the point at (¢, x) = (2, —2) to the highest point
shown (at # = 4 s) which would represent the answer for part (f).

A
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6. (a) Using the fact that time = distance/velocity while the velocity is constant, we find

_732m+73.2m

Voo T Bom L Bom =1.74 m/s.

1.22m/s " 3.05m

(b) Using the fact that distance = vt while the velocity v is constant, we find

_ (122 m/s)(60 s) +(3.05m/s)(60 s)

- =214 m/s.
¢ 120 s

(c) The graphs are shown below (with meters and seconds understood). The first consists
of two (solid) line segments, the first having a slope of 1.22 and the second having a
slope of 3.05. The slope of the dashed line represents the average velocity (in both
graphs). The second graph also consists of two (solid) line segments, having the same
slopes as before — the main difference (compared to the first graph) being that the stage
involving higher-speed motion lasts much longer.

X
1544 ;

i A o 120
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7. Converting to seconds, the running times are #; = 147.95 s and £, = 148.15 s,
respectively. If the runners were equally fast, then

— Ll _ L
Save; = Save, = PR
1 2

From this we obtain

L-1L =(t—2—1] L =Gj§';§—1j L,=0.00135, ~1.4 m

1

where we set L; = 1000 m in the last step. Thus, if L; and L, are no different than about
1.4 m, then runner 1 is indeed faster than runner 2. However, if L; is shorter than L, by
more than 1.4 m, then runner 2 would actually be faster.
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8. Let v, be the speed of the wind and v, be the speed of the car.

(a) Suppose during time interval ¢, the car moves in the same direction as the wind.

Then its effective speed is =v.+v, , and the distance traveled is

v
eff',1
d=v,t,=(.+v,) . On the other hand, for the return trip during time interval #,, the

car moves in the opposite direction of the wind and the effective speed would be

Va2 =V.—V,. The distance traveled is d =v,; ,t, =(v, —v,)t,. The two expressions can

be rewritten as

w

d
v.+v,=— and v, -v =—
tl t2

. . g ) 1
Adding the two equations and dividing by two, we obtain v_ = —(£+i] . Thus, method
tl t2
1 gives the car’s speed v, in windless situation.

(b) If method 2 is used, the result would be

= d _2d 2d _vf,—vi_v - V_WZ
C+L)/2 1+t d d v ‘ v. )|

v.+tv, v.—v

The fractional difference would be
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9. The values used in the problem statement make it easy to see that the first part of the
trip (at 100 km/h) takes 1 hour, and the second part (at 40 km/h) also takes 1 hour.
Expressed in decimal form, the time left is 1.25 hour, and the distance that remains is 160
km. Thus, a speed v = (160 km)/(1.25 h) = 128 km/h is needed.
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10. The amount of time it takes for each person to move a distance L with speed v, is

At = L/v, . With each additional person, the depth increases by one body depth d

(a) The rate of increase of the layer of people is

_d _ d _dv,_(0.25m)3.50 ms)
At Llv, L 1.75m

=0.50 m/s

(b) The amount of time required to reach a depth of D =5.0 mis

=——— =10s
0.50 m/s

D_ 50m
R
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11. Recognizing that the gap between the trains is closing at a constant rate of 60 km/h,
the total time which elapses before they crash is # = (60 km)/(60 km/h) = 1.0 h. During
this time, the bird travels a distance of x = vt = (60 km/h)(1.0 h) = 60 km.
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12. (a) Let the fast and the slow cars be separated by a distance d at ¢t = 0. If during the
time interval ¢=L/v =(12.0 m)/(5.0 m/s)=2.40s in which the slow car has moved a
distance of L =12.0 m, the fast car moves a distance of vt =d + L to join the line of
slow cars, then the shock wave would remain stationary. The condition implies a

separation of
d=vt—L=(25m/s)(2.4s)—12.0 m =48.0 m.

(b) Let the initial separation at 1 =0 be d =96.0 m. At a later time ¢, the slow and the
fast cars have traveled x=vt and the fast car joins the line by moving a distance d +x.

From
t—i _d+x
2 v
we get
x=—0 4 S00MS 96,0 m)y=24.0 m,

v—v. 25.0m/s—5.00 m/s

which in turn gives ¢=(24.0 m)/(5.00 m/s) =4.80s. Since the rear of the slow-car pack

has moved a distance of Ax=x—-L =24.0 m—12.0 m =12.0 mdownstream, the speed of
the rear of the slow-car pack, or equivalently, the speed of the shock wave, is

L M _120m
Sk 4 4.80s

(c) Since x> L, the direction of the shock wave is downstream.

=2.50 m/s.
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13. (a) Denoting the travel time and distance from San Antonio to Houston as 7 and D,
respectively, the average speed is

_ D _ (55 km/h)(7/2)+(90 km/h)(7 /2)

Sav 1= = 725 km/h
£T T

which should be rounded to 73 km/h.
(b) Using the fact that time = distance/speed while the speed is constant, we find

D D
Sw =7 =73 —p7a- =683 kmh
55 km/h T 90 km/h

which should be rounded to 68 km/h.

(c) The total distance traveled (2D) must not be confused with the net displacement (zero).
We obtain for the two-way trip
_ 2D =70 knvh.
D . D
72.5km/h © 68.3 km/h

Savg

(d) Since the net displacement vanishes, the average velocity for the trip in its entirety is
Zero.

(e) In asking for a sketch, the problem is allowing the student to arbitrarily set the
distance D (the intent is not to make the student go to an Atlas to look it up); the student
can just as easily arbitrarily set 7 instead of D, as will be clear in the following discussion.
We briefly describe the graph (with kilometers-per-hour understood for the slopes): two
contiguous line segments, the first having a slope of 55 and connecting the origin to (¢, x1)
= (772, 557/2) and the second having a slope of 90 and connecting (¢, x;) to (7, D) where
D = (55 +90)772. The average velocity, from the graphical point of view, is the slope of a
line drawn from the origin to (7, D). The graph (not drawn to scale) is depicted below:

X

T o T Rt
L
. /:,’f’
Tk -7 i} bl

g - ) /.
e
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14. We use the functional notation x(¢), v(¢) and a(¢) in this solution, where the latter two
quantities are obtained by differentiation:

V(1) = d);gt) =—12¢t and a(t)= d‘;gt)

=-12

with SI units understood.
(a) From v(¢) = 0 we find it is (momentarily) at rest at = 0.
(b) We obtain x(0) = 4.0 m

(c) and (d) Requiring x(f) = 0 in the expression x(f) = 4.0 — 6.07 leads to ¢ = +0.82 s for
the times when the particle can be found passing through the origin.

(e) We show both the asked-for graph (on the left) as well as the “shifted” graph which is
relevant to part (f). In both cases, the time axis is given by -3 < ¢ < 3 (SI units
understood).

(f) We arrived at the graph on the right (shown above) by adding 20z to the x(¢)
expression.

(g) Examining where the slopes of the graphs become zero, it is clear that the shift causes

the v = 0 point to correspond to a larger value of x (the top of the second curve shown in
part (e) is higher than that of the first).
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15. We use Eq. 2-4. to solve the problem.
(a) The velocity of the particle is

ptx_d (4—12¢+3t%) =—12+6t.
dt  dt

Thus, at =1 s, the velocity is v= (=12 + (6)(1)) = -6 m/s.
(b) Since v < 0, it is moving in the negative x direction at =1 s.
(c) Att=1s, the speed is |[v| = 6 m/s.

(d) For 0 < ¢ < 2 s, |v| decreases until it vanishes. For 2 < < 3 s, |v| increases from zero to
the value it had in part (¢). Then, |v| is larger than that value for 7> 3 s.

(e) Yes, since v smoothly changes from negative values (consider the # = 1 result) to
positive (note that as # — + oo, we have v — + o). One can check that v=0 when ¢#=2s.

(f) No. In fact, from v =—-12 + 6¢, we know that v >0 for > 2 s.
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16. Using the general property --exp(bx) = bexp(bx), we write

p=B (M] e+ (190) - (det] .
dt dt dt

If a concern develops about the appearance of an argument of the exponential (—)
apparently having units, then an explicit factor of 1/7 where 7= 1 second can be inserted
and carried through the computation (which does not change our answer). The result of
this differentiation is

v=16(1-1)e™”’
with ¢ and v in SI units (s and m/s, respectively). We see that this function is zero when ¢
=1 s. Now that we know when it stops, we find out where it stops by plugging our

result £ = 1 into the given function x = 16¢e” with x in meters. Therefore, we find x = 5.9
m.
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17. We use Eq. 2-2 for average velocity and Eq. 2-4 for instantaneous velocity, and work
with distances in centimeters and times in seconds.

(a) We plug into the given equation for x for # = 2.00 s and ¢ = 3.00 s and obtain x; =
21.75 cm and x3 = 50.25 cm, respectively. The average velocity during the time interval
2.00<¢<3.00sis

by = ﬂ_ 5025 cm—21.75 cm
YAt 300s —2.00s

which yields vy, = 28.5 cm/s.

(b) The instantaneous velocity is \):%:4.&2 , which, at time ¢ = 2.00 s, yields v =
(4.5)(2.00)* = 18.0 cm/s.

(c) At ¢ =3.00 s, the instantaneous velocity is v = (4.5)(3.00)> = 40.5 cm/s.
(d) At t=2.50 s, the instantaneous velocity is v = (4.5)(2.50)* = 28.1 cm/s.

(e) Let t,, stand for the moment when the particle is midway between x, and x; (that is,
when the particle is at x,, = (x2 + x3)/2 = 36 cm). Therefore,

x, =975 + 15t = t, =259
in seconds. Thus, the instantaneous speed at this time is v = 4.5(2.596)* = 30.3 cn/s.
(f) The answer to part (a) is given by the slope of the straight line between =2 and # =3

in this x-vs-¢ plot. The answers to parts (b), (c), (d) and (e) correspond to the slopes of

tangent lines (not shown but easily imagined) to the curve at the appropriate points.
XL
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18. We use the functional notation x(#), v(¢) and a(¢) and find the latter two quantities by
differentiating:

V(1) = dxt(t) =—15>+20 and a(r)= d‘;_(:)

= —30¢

with SI units understood. These expressions are used in the parts that follow.

(a) From 0= —15¢> + 20, we see that the only positive value of ¢ for which the particle
is (momentarily) stopped is #=~/20/15=12s.

(b) From 0 = —30¢, we find a(0) = 0 (that is, it vanishes at 7 = 0).
(c) It is clear that a(f) = — 30¢ is negative for >0
(d) The acceleration a(¢) = — 30¢ is positive for # < 0.

(e) The graphs are shown below. SI units are understood.

n ¥

- --\‘\ ':I: _HH i

=i

-5l —
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19. We represent its initial direction of motion as the +x direction, so that vy = +18 m/s
and v =-30 m/s (when ¢ = 2.4 s). Using Eq. 2-7 (or Eq. 2-11, suitably interpreted) we find

_ (30 m/s) — (+1m/s) _

Uy —20 m/s’
24s

which indicates that the average acceleration has magnitude 20 m/s” and is in the opposite
direction to the particle’s initial velocity.
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20. (a) Taking derivatives of x(r) = 12¢* — 2¢° we obtain the velocity and the acceleration
functions:

W)=24t- 6 and  a(r)=24-12¢

with length in meters and time in seconds. Plugging in the value ¢+ = 3 yields
x(3)=54 m.

(b) Similarly, plugging in the value 7 = 3 yields v(3) = 18 m/s.

(c) For t=3, a(3) =—12 m/s".

(d) At the maximum x, we must have v = 0; eliminating the # = 0 root, the velocity
equation reveals ¢ = 24/6 = 4 s for the time of maximum x. Plugging ¢ = 4 into the
equation for x leads to x = 64 m for the largest x value reached by the particle.

(e) From (d), we see that the x reaches its maximum at t = 4.0 s.

(f) A maximum v requires @ = 0, which occurs when ¢ = 24/12 = 2.0 s. This, inserted into
the velocity equation, gives vpax = 24 m/s.

(g) From (f), we see that the maximum of v occurs at ¢t =24/12 = 2.0 s.

(h) In part (e), the particle was (momentarily) motionless at # = 4 s. The acceleration at
that time is readily found to be 24 — 12(4) = —24 m/s”.

(1) The average velocity is defined by Eq. 2-2, so we see that the values of x at = 0 and ¢
= 3 s are needed; these are, respectively, x = 0 and x = 54 m (found in part (a)). Thus,
Ve = 0~ 18 s
3-0
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21. In this solution, we make use of the notation x(¢) for the value of x at a particular .
The notations (¢) and a(¢) have similar meanings.

(a) Since the unit of ¢#* is that of length, the unit of ¢ must be that of length/time”, or m/s”
in the SI system.

(b) Since bf° has a unit of length, » must have a unit of length/time’, or m/s’.

(c) When the particle reaches its maximum (or its minimum) coordinate its velocity is
zero. Since the velocity is given by v = dx/dt = 2ct — 3bF, v =0 occurs for ¢ = 0 and for

_E_2(3.0m/sz)_1 S
3 320m/s’)

Fort=0,x=xp=0and fort=1.0s, x = 1.0 m > xy. Since we seek the maximum, we
reject the first root (¢ = 0) and accept the second (¢ = 15s).

(d) In the first 4 s the particle moves from the origin to x = 1.0 m, turns around, and goes
back to

x(45)=B0m/s*)(40s)* — (20m/s’)(4.0s)°’ =-80m.

The total path length it travels is 1.0 m + 1.0 m + 80 m = 82 m.
(e) Its displacement is Ax = x, — x;, where x; = 0 and x, = —-80 m. Thus, Ax=—80 m .
The velocity is given by v =2ct — 3bf = (6.0 m/sz)t — (6.0 m/s3)t2.
(f) Plugging in t =1 s, we obtain

v(1s)=(6.0 m/s*)(1.0 s) — (6.0 m/s’)(1.0 s)* =0.
(g) Similarly, v(2 s)=(6.0 m/s*)(2.0 s)—(6.0 m/s*)(2.0 s)’ = —12m/s .
(h) v(3s)=(6.0 m/s*)(3.0 s)—(6.0 m/s’)(3.0s)* = —36 m/s .
(i) v(4s)=(6.0 m/s*)(4.0 s)— (6.0 m/s’)(4.0 s)* =—72 m/s .
The acceleration is given by a = dv/dt = 2¢ — 6b = 6.0 m/s* — (12.0 m/s’)z.
(j) Plugging in =1 s, we obtain

a(l s)=6.0 m/s* —(12.0 m/s*)(1.0 s) = —6.0 m/s’.
(k) a(2s)=6.0 m/s* —(12.0 m/s’)(2.0 s)= —18 m/s’.
() a(3s)=6.0 m/s* — (12.0 m/s’)(3.0 s) =30 m/s”.

(m) a(45s)=6.0m/s* —(12.0 m/s’)(4.0 s) = —42 m/s’.
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22. We use Eq. 2-2 (average velocity) and Eq. 2-7 (average acceleration). Regarding our
coordinate choices, the initial position of the man is taken as the origin and his direction
of motion during 5 min < ¢ < 10 min is taken to be the positive x direction. We also use
the fact that Ax = vA¢' when the velocity is constant during a time interval A¢'.

(a) The entire interval considered is Az = 8 — 2 = 6 min which is equivalent to 360 s,
whereas the sub-interval in which he is moving is only At’ =8 —5=3min =180 s. His

position at + = 2 min is x = 0 and his position at t = 8 min is x=VAf =
(2.2)(180) =396 m . Therefore,
~396m-0

Vv =110m/s.
360 s

(b) The man is at rest at # = 2 min and has velocity v = +2.2 m/s at t = 8 min. Thus,
keeping the answer to 3 significant figures,
22m/s—-0
aav N
¢ 360 s
(c) Now, the entire interval considered is Af =9 — 3 = 6 min (360 s again), whereas the
sub-interval in which he is moving is A#'=9-5=4min=240s). His position at
t=3minis x = 0 and his position at t = 9 min is x = vAt' =(2.2)(240) =528 m .
Therefore,

=0.00611m/s* .

528m -0

Vare =147 m/s.
360 s

(d) The man is at rest at £ = 3 min and has velocity v = +2.2 m/s at t = 9 min.
Consequently, ., =2.2/360 = 0.00611 m/s’ just as in part (b).

(e) The horizontal line near the bottom of this x-vs-z graph represents the man standing at
x =0 for 0 <¢ <300 s and the linearly rising line for 300 < ¢ < 600 s represents his
constant-velocity motion. The dotted lines represent the answers to part (a) and (c) in the
sense that their slopes yield those results.

x

Sl //
J tC‘J/,/
Vs
&
s
fal /
,-";/f; /
'\:} s
I SO

The graph of v-vs-f is not shown here, but would consist of two horizontal “steps” (one at
v =0 for 0 <7 <300 s and the next at v = 2.2 m/s for 300 < 7 < 600 s). The indications of
the average accelerations found in parts (b) and (d) would be dotted lines connecting the
“steps” at the appropriate ¢ values (the slopes of the dotted lines representing the values
of aavg).
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23. We use v = vy + at, with ¢ = 0 as the instant when the velocity equals +9.6 m/s.

(a) Since we wish to calculate the velocity for a time before t = 0, we set t = 2.5 s. Thus,
Eq. 2-11 gives

v=(96m/s) +(32m/s’) (-25s)=16m/s.
(b) Now, ¢ =+2.5 s and we find

v=(9.6m/s) +(32m/s’) (25s)=18m/s.
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24. The constant-acceleration condition permits the use of Table 2-1.

(a) Setting v=0and xo=0in v’ =v] +2a(x—x,), we find

2 62
x= oo LG00XI0)_ o460
2a 2-125%10

Since the muon is slowing, the initial velocity and the acceleration must have opposite
signs.

(b) Below are the time-plots of the position x and velocity v of the muon from the
moment it enters the field to the time it stops. The computation in part (a) made no
reference to #, so that other equations from Table 2-1 (such as v=v, + af and

x =v,t + +at®) are used in making these plots.
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25. The constant acceleration stated in the problem permits the use of the equations in
Table 2-1.

(a) We solve v = vy + at for the time:

_ Bl 8
o v0:10(3.0><10 rzn/s):&1><106S
a 98 m/s

which is equivalent to 1.2 months.

(b) We evaluate x = x, + vt +Lat’, withxo=0. The result is

X =

% (9.8 m/s* ) (3.1x10°s)* =4.6x10" m .
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26. We take +x in the direction of motion, so vo = +24.6 m/s and a = — 4.92 m/s>. We also
take xo = 0.

(a) The time to come to a halt is found using Eq. 2-11:

0=v, +at = t= 22OMS _5 005,
—-4.92 m/s

(b) Although several of the equations in Table 2-1 will yield the result, we choose Eq.
2-16 (since it does not depend on our answer to part (a)).

(24.6 m/s)’
2(-4.92 m/s)

0=V, +2ax = x= — =61.5m.

(c) Using these results, we plot vt+1at’ (the x graph, shown next, on the left) and v, +

at (the v graph, on the right) over 0 < ¢ < 5 s, with SI units understood.

X I
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27. Assuming constant acceleration permits the use of the equations in Table 2-1. We
solve v’ =v] +2a(x—x,) withxo=0and x=0.010 m. Thus,

_vi—vy (5.7x10° m/s)’ —(1.5%10° m/s)?
2x 2(0.010 m)

=1.62x10" m/s>.

a
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28. In this problem we are given the initial and final speeds, and the displacement, and
asked to find the acceleration. We use the constant-acceleration equation given in Eq.
2-16, v =v§ + 2a(x — xo).

(a) With v, =0, v=1.6m/s and Ax=5.0um, the acceleration of the spores during the
launch is
LYo (L6m/s)’

= ———=2.56x10° m/s’ =2.6x10"g
2x  2(5.0x107° m)

(b) During the speed-reduction stage, the acceleration is

22 _ 2
Syt OQOmMS _5gy100 mis® =—1.3x10%g
2x  2(.0x10° m)

a

The negative sign means that the spores are decelerating.
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29. We separate the motion into two parts, and take the direction of motion to be positive.
In part 1, the vehicle accelerates from rest to its highest speed; we are given vo = 0; v =
20 m/s and @ = 2.0 m/s>. In part 2, the vehicle decelerates from its highest speed to a
halt; we are given vo = 20 m/s; v = 0 and a = —1.0 m/s” (negative because the acceleration
vector points opposite to the direction of motion).

(a) From Table 2-1, we find #; (the duration of part 1) from v = vo + at. In this way,
20=0+2.0¢,yields t; = 10 s. We obtain the duration #, of part 2 from the same

equation. Thus, 0 =20 + (—1.0)t, leads to #, = 20 s, and the total is t = ¢, + , = 30 s.

(b) For part 1, taking xo = 0, we use the equation v =15 + 2a(x — xo) from Table 2-1 and
find

B V-V (20 m/s)’> —(0)°
2a 2(2.0 m/s*)

X =100 m.

This position is then the initial position for part 2, so that when the same equation is
used in part 2 we obtain

vi—vs (0’ —(20 m/s)’
2a 2(-1.0 m/s%)

x—100 m=

Thus, the final position is x = 300 m. That this is also the total distance traveled should be
evident (the vehicle did not "backtrack" or reverse its direction of motion).
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30. The acceleration is found from Eq. 2-11 (or, suitably interpreted, Eq. 2-7).

1000 m/ km

(1020 km/h)
Ay 3600 s/ h 5
a=—= =2024 m/s" .

At 14 s

In terms of the gravitational acceleration g, this is expressed as a multiple of 9.8 m/s* as

follows:
L[ 2024 m/s’ | 91
o8sms )5 &
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31. We assume the periods of acceleration (duration ¢;) and deceleration (duration #,) are
periods of constant a so that Table 2-1 can be used. Taking the direction of motion to be
+x then a; = +1.22 m/s” and @, = —1.22 m/s>. We use SI units so the velocity at ¢ =, is v =
305/60 = 5.08 m/s.

(a) We denote Ax as the distance moved during #;, and use Eq. 2-16:

2
vi=v, +2aAx = M=M=10.59 m=~10.6 m.
2(1.22 m/s”)
(b) Using Eq. 2-11, we have
- v-v, _5.08 m/S; —417s
a, 1.22m/s

The deceleration time #, turns out to be the same so that #; + #, = 8.33 s. The distances
traveled during ¢, and #, are the same so that they total to 2(10.59 m) = 21.18 m. This
implies that for a distance of 190 m — 21.18 m = 168.82 m, the elevator is traveling at
constant velocity. This time of constant velocity motion is

16882m

t,=———=3321s.
508 m/s

Therefore, the total time is 8.33 s + 33.21 s =41.5s.
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32. We choose the positive direction to be that of the initial velocity of the car (implying
that a < 0 since it is slowing down). We assume the acceleration is constant and use Table
2-1.

(a) Substituting vo = 137 km/h = 38.1 m/s, v =90 km/h = 25 m/s, and a = -5.2 m/s” into v
= vy + at, we obtain

t_25m/s—38m/s

=25s.
—52 m/s

(b) We take the car to be at x = 0 when the brakes -+ icui
are applied (at time 7 = 0). Thus, the coordinate of .
the car as a function of time is given by / '

fill
x=(38m/s)t + %(—5.2 /s’ )¢’ /

40 /

in SI units. This function is plotted from =0 to ¢ =" -

= 2.5 s on the graph below. We have not shown /

the v-vs-t graph here; it is a descending straight U s 'n s ap a2
line from v, to v. {5
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33. The problem statement (see part (a)) indicates that a = constant, which allows us to
use Table 2-1.

(a) We take xop = 0, and solve x = vpt + %at2 (Eq. 2-15) for the acceleration: a = 2(x —
vot)/£*. Substituting x = 24.0 m, vo = 56.0 kmv/h = 15.55 m/s and ¢ = 2.00 s, we find

2(24.0m— (15.55m/ 2.00
a= ( m ( ZS) ( S)): —3.5611]/82,
(2.00s)

or |a|=3.56 m/s’. The negative sign indicates that the acceleration is opposite to the
direction of motion of the car. The car is slowing down.

(b) We evaluate v = vy + at as follows:

v=1555m/s - (356 m/s’) (200 s) =843 m/s

which can also be converted t030.3 km/h.
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34. (a) Eq. 2-15 is used for part 1 of the trip and Eq. 2-18 is used for part 2:

Ax;=vo ) + % art’ where a1 = 2.25 m/s” and A, = % m
Axy =y ty — % arty’ where a, = -0.75 m/s and Ax, = 2 9400 m

In addition, v,; = v, = 0. Solving these equations for the times and adding the results gives
t=t +t =56.6s.

(b) Eq. 2-16 is used for part 1 of the trip:

900

V2= (V1) + 2a1Ax1 = 0 + 2(2.25)( =~ ) = 1013 m’/s’

which leads to v =31.8 m/s for the maximum speed.
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35. (a) From the figure, we see that xo = —2.0 m. From Table 2-1, we can apply x — xo =
vot + %at2 with £ = 1.0 s, and then again with ¢ = 2.0 s. This yields two equations for the
two unknowns, vy and a:
0.0—(=2.0 m)=v, (1.0 s)+%a(1.0 s)’
6.0 m—(-2.0 m)=v, (2.0 s)+%a(2.0 5)’.
Solving these simultaneous equations yields the results vo = 0 and a = 4.0 m/s”.

(b) The fact that the answer is positive tells us that the acceleration vector points in the +x
direction.
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36. We assume the train accelerates from rest (v, =0 and x,=0) at a, =+134 m/s’
until the midway point and then decelerates at @, =—1.34 m/s’ until it comes to a stop

(v, =0) at the next station. The velocity at the midpoint is v; which occurs at x; = 806/2
=403m.

(a) Eq. 2-16 leads to

W= +2ax = v =,2(134m/s?)(403 m) =329 mis.
(b) The time ¢, for the accelerating stage is (using Eq. 2-15)

) 2(403 m)

1
X, =Vt + Ealtl = = 34 m/s =24.53s.

Since the time interval for the decelerating stage turns out to be the same, we double this
result and obtain # = 49.1 s for the travel time between stations.

(c) With a “dead time” of 20 s, we have 7T =t + 20 = 69.1 s for the total time between
start-ups. Thus, Eq. 2-2 gives

= 806m:11.7 m/s.

%
" 691s

(d) The graphs for x, v and a as a function of t are shown below. SI units are understood.
The third graph, a(¢), consists of three horizontal “steps” — one at 1.34 during 0 < ¢ <
24.53 and the next at —1.34 during 24.53 <¢<49.1 and the last at zero during the “dead
time” 49.1 <¢<69.1).
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37. (a) We note that vo = 12/6 = 2 m/s (with two significant figures understood).
Therefore, with an initial x value of 20 m, car A will be at x =28 m when t =4 s. This
must be the value of x for car B at that time; we use Eq. 2-15:

28 m= (12 m/s)t + %aBt2 where 1 =4.0s.

This yields ag =— 2.5 m/s.

(b) The question is: using the value obtained for ag in part (a), are there other values of ¢
(besides ¢ =4 s) such that xo = xg ? The requirement is

20+2t=12t+ 3 ag?’

where ag= —5/2. There are two distinct roots unless the discriminant \/ 10 — 2(—20)(ag)
is zero. In our case, it is zero — which means there is only one root. The cars are side by
side only once at =4 s.

(c) A sketch is shown below. It consists of a straight line (x5) tangent to a parabola (xg) at
t=4.

x {m)
A1y YA -
. (45, 28m)
b _,--""_'._..
:3 -..____:_-_'_.:-“"T -\..'\-\._\
T . )
ay T | AR
- Y
- ry I ",
] ; \
w7 |
s 4 !
| f 4]
z 1 & & 1u

(d) We only care about real roots, which means 10> — 2(-20)(ag) = 0. If |ag| > 5/2 then
there are no (real) solutions to the equation; the cars are never side by side.

(e) Here we have 10> — 2(-20)(ag) >0 = two real roots. The cars are side by side at
two different times.
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38. We take the direction of motion as +x, so a = —5.18 m/s?, and we use SI units, so vy =
55(1000/3600) = 15.28 m/s.

(a) The velocity is constant during the reaction time 7, so the distance traveled during it is
d,=vT— (1528 m/s) (0.75s) =11.46 m.

We use Eq. 2-16 (with v = 0) to find the distance d traveled during braking:

2

v =v] +2ad, = d,=- _(5.28 mfs)”
2(-5.18 m/s?)

which yields dj, = 22.53 m. Thus, the total distance is d, + dj = 34.0 m, which means that
the driver is able to stop in time. And if the driver were to continue at vy, the car would
enter the intersection in # = (40 m)/(15.28 m/s) = 2.6 s which is (barely) enough time to
enter the intersection before the light turns, which many people would consider an
acceptable situation.

(b) In this case, the total distance to stop (found in part (a) to be 34 m) is greater than the
distance to the intersection, so the driver cannot stop without the front end of the car
being a couple of meters into the intersection. And the time to reach it at constant speed is
32/15.28 = 2.1 s, which is too long (the light turns in 1.8 s). The driver is caught between
a rock and a hard place.
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39. The displacement (Ax) for each train is the “area” in the graph (since the displacement
is the integral of the velocity). Each area is triangular, and the area of a triangle is
1/2( base) x (height). Thus, the (absolute value of the) displacement for one train (1/2)(40
m/s)(5 s) = 100 m, and that of the other train is (1/2)(30 m/s)(4 s) = 60 m. The initial
“gap” between the trains was 200 m, and according to our displacement computations,
the gap has narrowed by 160 m. Thus, the answer is 200 — 160 = 40 m.
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40. Let d be the 220 m distance between the cars at t = 0, and v, be the 20 km/h = 50/9
m/s speed (corresponding to a passing point of x; = 44.5 m) and v, be the 40 km/h =100/9
m/s speed (corresponding to passing point of x, = 76.6 m) of the red car. We have two
equations (based on Eq. 2-17):

1
d_xlz\/otl + Eatlz where Hh=Xx1/V

1
d—x2=v0t2 + Eatzz Wheret2=x2 /V,

We simultaneously solve these equations and obtain the following results:

(a) vo = — 13.9 m/s. or roughly — 50 km/h (the negative sign means that it’s along the —x
direction).

(b) a =— 2.0 m/s” (the negative sign means that it’s along the —x direction).
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41. The positions of the cars as a function of time are given by
1, 1,
x, (1) = x, +5th =(-35.0m) +§ar1

x, (1) =x,0+v,t=(270 m)— (20 m/s)¢

where we have substituted the velocity and not the speed for the green car. The two cars
pass each other at 1 =12.0s when the graphed lines cross. This implies that

(270 m)— (20 m/s)(12.0 s) =30 m = (—35.0 m) +%ar(12.0 5)?

which can be solved to give a, =0.90 m/s’.
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1. A vector a can be represented in the magnitude-angle notation (a, ), where

_ 2 2
a=,la; +a,

0 =tan”' [a—yJ
a.x

is the angle a makes with the positive x axis.

is the magnitude and

(a) Given 4, =—25.0 m and 4,=40.0 m, 4=1/(=25.0m)’ +(40.0m)’ =47.2m

(b) Recalling that tan € = tan (€ + 180°), tan ' [(40.0 m)/ (— 25.0 m)] = — 58° or 122°.
Noting that the vector is in the third quadrant (by the signs of its x and y components) we
see that 122° is the correct answer. The graphical calculator “shortcuts” mentioned above
are designed to correctly choose the right possibility.
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2. The angle described by a full circle is 360° = 2r rad, which is the basis of our
conversion factor.

(a)
20.0°=(20.0°) 271 _ 0 349 rad .
360°
(b)
50.0°=(50.0°) 2713 _ 0 873 rad .
360°
(©)
100° = (100°) 2;’ 0 _ 1 75 rad.
(d)
0.330rad = (0.330 rad) 360 =18.9°.
27 rad
(e)
2.10rad = (2.10 rad) 360 =120°.
27 rad
()
7.70rad = (7.70 rad) 360 =441°.
27 rad
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3. The x and the y components of a vector @ lying on the xy plane are given by

a,=acos@, ay:asinﬁ
where a = a| is the magnitude and @is the angle between a and the positive x axis.
(a) The x component of a is given by a, = 7.3 cos 250°=—2.5m.
(b) and the y component is given by a, = 7.3 sin 250° = — 6.9 m.
In considering the variety of ways to compute these, we note that the vector is 70° below
the — x axis, so the components could also have been found from a, = — 7.3 cos 70° and

a, =— 7.3 sin 70°. In a similar vein, we note that the vector is 20° to the left from the —y
axis, so one could use a, =— 7.3 sin 20° and a, = — 7.3 cos 20° to achieve the same results.
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4. (a) The height is & = d sin6, where d = 12.5 m and 8= 20.0°. Therefore, & =4.28 m.

(b) The horizontal distance is d cosd=11.7 m.
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5. The vector sum of the displacements d_ . and d_ must give the same result as its

storm
originally intended displacement 670 =(120 km)j where east is f, north is 3 Thus, we
write

—

d, =0100km)i, d_, = Ai+B).

storm n

(a) The equation (jstorm + (jnew = c?o readily yields 4 = —100 km and B = 120 km. The

magnitude of d,, is therefore equal to |d, |=+/4> + B> =156 km .

(b) The direction is tan"' (B/4) = —50.2° or 180° + ( —50.2°) = 129.8°. We choose the
latter value since it indicates a vector pointing in the second quadrant, which is what we
expect here. The answer can be phrased several equivalent ways: 129.8°
counterclockwise from east, or 39.8° west from north, or 50.2° north from west.
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6. (a) With =15 m and 8= 30°, the x component of 7 is given by
re=rcos@ = (15 m) cos 30°= 13 m.

(b) Similarly, the y component is given by 7, = r sin€ = (15 m) sin 30° = 7.5 m.
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7. The length unit meter is understood throughout the calculation.

(a) We compute the distance from one corner to the diametrically opposite corner:
\/(3.00 m)’ +(3.70 m)* +(4.30 m)* .

(b) The displacement vector is along the straight line from the beginning to the end point
of the trip. Since a straight line is the shortest distance between two points, the length of
the path cannot be less than the magnitude of the displacement.

(c) It can be greater, however. The fly might, for example, crawl along the edges of the
room. Its displacement would be the same but the path length would be

l+w+h=11.0 m.

(d) The path length is the same as the magnitude of the displacement if the fly flies along
the displacement vector.

(e) We take the x axis to be out of the page, the y axis to be to the right, and the z axis to

be upward. Then the x component of the displacement is w = 3.70 m, the y component of
the displacement is 4.30 m, and the z component is 3.00 m. Thus,

d =(3.70 m)i +(4.30 m) j+(3.00 m)k .

An equally correct answer is gotten by interchanging the length, width, and height.
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(f) Suppose the path of the fly is as shown by the dotted lines on the upper diagram.
Pretend there is a hinge where the front wall of the room joins the floor and lay the wall
down as shown on the lower diagram. The shortest walking distance between the lower
left back of the room and the upper right front corner is the dotted straight line shown on
the diagram. Its length is

Loy =(w+ )+ = /(370 m+3.00 m)’ + (4.30 m)’ =7.96 m.

min
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8. We label the displacement vectors A, B and C (and denote the result of their vector
sum as 7 ). We choose east as the 1 direction (+x direction) and north as the j direction

(+y direction). We note that the angle between C and the x axis is 60°. Thus,

A

noarth

; /

Witk ——— Cifsl /l:’ 4= (50 km)1i

¥ ' 5 A

st B =(30km)j
= C = (25 km) cos(60°) i + (25 km)sin (60°) ]
A..
i} 2

(a) The total displacement of the car from its initial position is represented by
F=A+ B+ C =(62.5 km)i + (51.7 km)

which means that its magnitude is

7| =/(62.5km)* +(51.7km)* =81 km.

(b) The angle (counterclockwise from +x axis) is tan ' (51.7 km/62.5 km) = 40°, which is
to say that it points 40° north of east. Although the resultant 7 is shown in our sketch, it

would be a direct line from the “tail” of A4 to the “head” of C.
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9. We write 7 =d +b . When not explicitly displayed, the units here are assumed to be
meters.

(a) The x and the y components of 7 are r, = a, + by = (4.0 m) — (13 m) =-9.0 mand r, =
ay,+b,=3.0m)+ (7.0 m) =10 m, respectively. Thus 7 =(-9.0 m)f+ (10m)3 .

(b) The magnitude of 7 is

r=lFl=r2 412 =(-9.0 m)* +(10 m)* =13 m.
(c) The angle between the resultant and the +x axis is given by
6= tan '(r,/r,) = tan"' [(10 m)/( —9.0 m)] = — 48° or 132°.

Since the x component of the resultant is negative and the y component is positive,
characteristic of the second quadrant, we find the angle is 132° (measured
counterclockwise from +x axis).
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10. We label the displacement vectors A, B and C (and denote the result of their vector
sum as 7 ). We choose east as the 1 direction (+x direction) and north as the j direction
(+y direction) All distances are understood to be in kilometers.

(a) The vector diagram representing the motion is shown below:

el

G
B e ‘—I_’ ol A4 =(3.1km)]
¢ A soulh B =(-2.4 km)i
¢ C =(-5.2km)]
¥

(b) The final point is represented by

F=A+B+C=(-2.4km)i+(-2.1 km)]
whose magnitude is

[7|=/(~2.4 km)’ + (2.1 km)’ = 3.2 km .

(c) There are two possibilities for the angle:

O=tan"" [%j:maor 221°.
- m

We choose the latter possibility since 7 is in the third quadrant. It should be noted that
many graphical calculators have polar <> rectangular “shortcuts” that automatically
produce the correct answer for angle (measured counterclockwise from the +x axis). We
may phrase the angle, then, as 221° counterclockwise from East (a phrasing that sounds
peculiar, at best) or as 41° south from west or 49° west from south. The resultant 7 is
not shown in our sketch; it would be an arrow directed from the “tail” of A to the “head”

of C.
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11. We find the components and then add them (as scalars, not vectors). With d = 3.40
km and 8= 35.0° we find d cos 8+ d sin 8= 4.74 km.
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12.(a) G+b=(3.01+4.0)) m+(5.0i—2.0]) m= (8.0 m)i+(2.0 m)].

(b) The magnitude of a+ b is

|d+b |=+/(8.0 m)* +(2.0 m)* =8.2 m.
(c) The angle between this vector and the +x axis is tan"'[(2.0 m)/(8.0 m)] = 14°.
(d) b-d=(501-2.0) m—(3.0i+4.0)) m= (2.0 m)i—(6.0 m)].

(e) The magnitude of the difference vector b—ais

|b—d|=+/(2.0 m)* +(=6.0 m)> =6.3 m.

(f) The angle between this vector and the +x axis is tan™ [( —6.0 m)/(2.0 m)] = —72°. The
vector is 72° clockwise from the axis defined by i.
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13. All distances in this solution are understood to be in meters.
(a) G+b=[4.0+(=1.0)]i+[(-3.0)+1.0] ] +(1.0+4.0)k=(3.01—2.0j+5.0 k) m.
(b) G—b=[4.0—(-1.0)]i+[(-3.0)—1.0]j +(1.0—4.0)k =(5.0 1 —4.0j—3.0 k) m.

(¢) The requirement G —b +¢ =0 leads to ¢ =b —d, which we note is the opposite of
what we found in part (b). Thus, ¢ =(-5.01 + 4.0] + 3.0k) m.
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14. The x, y and z components of 7 =¢ + d are, respectively,

(@r=c+d =74 m+44 m=12m,
(b)r,=c,+d,=-3.8 m-2.0 m=-5.8 m, and

(c)rn=c.+d. =—6.1m+3.3m=-2.8 m.
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15. Reading carefully, we see that the (x, y) specifications for each “dart” are to be
interpreted as (Ax, Ay) descriptions of the corresponding displacement vectors. We

combine the different parts of this problem into a single exposition.

(a) Along the x axis, we have (with the centimeter unit understood)

30.0 + b, — 20.0 — 80.0 = —140,

which gives b, =—70.0 cm.
(b) Along the y axis we have

40.0 -70.0 + ¢, - 70.0 = —-20.0

which yields ¢, = 80.0 cm.

(c) The magnitude of the final location (-140 ,-20.0) is \/ (-140)* +(=20.0)> =141 cm.
(d) Since the displacement is in the third quadrant, the angle of the overall displacement

is given by 7 +tan"'[(-=20.0)/(-140)]or 188° counterclockwise from the +x axis (172°
clockwise from the +x axis).
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16. If we wish to use Eq. 3-5 in an unmodified fashion, we should note that the angle
between C and the +x axis is 180° + 20.0° = 200°.

(a) The x and y components of B are given by

B.=C,—A4,=(15.0m) cos 200° — (12.0 m) cos 40° =-23.3 m,
B, =C,—A4,=(15.0 m) sin 200° — (12.0 m) sin 40° =—-12.8 m.

Consequently, its magnitude is | B | = \/(—23.3 m)’ +(-12.8 m)* =26.6 m.

(b) The two possibilities presented by a simple calculation for the angle between B and
the +x axis are tan '[( —12.8 m)/( —23.3 m)] = 28.9°, and 180° + 28.9° = 209°. We choose
the latter possibility as the correct one since it indicates that B is in the third quadrant
(indicated by the signs of its components). We note, too, that the answer can be
equivalently stated as —151°.
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17. It should be mentioned that an efficient way to work this vector addition problem is

with the cosine law for general triangles (and since a ,b and 7 form an isosceles triangle,
the angles are easy to figure). However, in the interest of reinforcing the usual

systematic approach to vector addition, we note that the angle b makes with the +x axis
is 30° +105° = 135° and apply Eq. 3-5 and Eq. 3-6 where appropriate.

(a) The x component of 7 1is r, = (10.0 m) cos 30° + (10.0 m) cos 135°=1.59 m.

(b) The y component of 7 is r, = (10.0 m) sin 30° + (10.0 m) sin 135°=12.1 m.

(c) The magnitude of 7 is r=|7|= \/(1.59 m)’ +(12.1 m)°> =12.2 m.

(d) The angle between 7 and the +x direction is tan '[(12.1 m)/(1.59 m)] = 82.5°.
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18. (a) Summing the x components, we have
20m+5b,—-20m—-60m=-140 m,
which gives b, =—80 m.
(b) Summing the y components, we have
60m-70m+c¢,—70 m=30m,
which implies ¢, =110 m.

(c) Using the Pythagorean theorem, the magnitude of the overall displacement is given by
J(=140 m)> +(30 m)*> = 143 m.

(d) The angle is given by tan™'(30/(-140))=-12°, (which would be 12° measured
clockwise from the —x axis, or 168° measured counterclockwise from the +x axis)
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19. Many of the operations are done efficiently on most modern graphical calculators
using their built-in vector manipulation and rectangular <> polar “shortcuts.” In this
solution, we employ the “traditional” methods (such as Eq. 3-6). Where the length unit is
not displayed, the unit meter should be understood.

(a) Using unit-vector notation,

a = (50 m)cos(30°)i + (50 m) sin(30°) ]

b = (50 m)cos(195°) i+ (50 m)sin (195°)

¢ =(50 m)cos(315°) i+ (50 m)sin (315°) ]
G+b+¢=(304m)i—(23.3m)].

The magnitude of this result is /(30.4 m)’ +(~23.3 m)> =38 m.

(b) The two possibilities presented by a simple calculation for the angle between the
vector described in part (a) and the +x direction are tan '[( —23.2 m)/(30.4 m)] = —37.5°,
and 180° + ( —37.5°) = 142.5°. The former possibility is the correct answer since the
vector is in the fourth quadrant (indicated by the signs of its components). Thus, the
angle is —37.5°, which is to say that it is 37.5° clockwise from the +x axis. This is
equivalent to 322.5° counterclockwise from +x.

(c) We find
G—b+¢=[43.3—(-48.3)+35.4]1—[25—(=12.9)+(=35.4)] j= (127 1+2.60 ) m

in unit-vector notation. The magnitude of this result is

|G—b+¢|=/(127 m)* +(2.6 m)* ~1.30x10> m.

(d) The angle between the vector described in part (c) and the +x axis is
tan '(2.6 m/127 m)=1.2° .

(e) Using unit-vector notation, d is given by d=d+b-¢=(—40.4 i+47.4 3) m,
which has a magnitude of \/ (-40.4 m)’> +(47.4 m)’ =62 m.

(f) The two possibilities presented by a simple calculation for the angle between the
vector described in part (e) and the +x axis are tan '(47.4/(—40.4))=-50.0°, and
180°+(—50.0°)=130° . We choose the latter possibility as the correct one since it

indicates that d is in the second quadrant (indicated by the signs of its components).
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20. Angles are given in ‘standard’ fashion, so Eq. 3-5 applies directly. We use this to
write the vectors in unit-vector notation before adding them. However, a very different-
looking approach using the special capabilities of most graphical calculators can be
imagined. Wherever the length unit is not displayed in the solution below, the unit meter
should be understood.

(a) Allowing for the different angle units used in the problem statement, we arrive at

E=3731+4.70]
F=1291-483]
G=1451+3.73]
H=-5201+3.00]

E+F+G+H=1281 +6.60].

(b) The magnitude of the vector sum found in part (a) is \/ (1.28 m)*+(6.60 m)> =6.72 m .
(c) Its angle measured counterclockwise from the +x axis is tan "' (6.60/1.28) = 79.0°.

(d) Using the conversion factor 7 rad = 180°, 79.0° = 1.38 rad.
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21. (a) With 1 directed forward and j directed leftward, then the resultant is (5.00 1+ 2.00

j) m . The magnitude is given by the Pythagorean theorem: \/(5.00 m)>+(2.00 m)> =
5.385 m=5.39 m.

(b) The angle is tan™'(2.00/5.00) = 21.8° (left of forward).
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22. The desired result is the displacement vector, in units of km, Z = (5.6 km), 90°
(measured counterclockwise from the +x axis), or 4=(5.6 km)j, where 3 is the unit
vector along the positive y axis (north). This consists of the sum of two displacements:
during the whiteout, B = (7.8 km), 50°, or

B =(7.8 km)(c0s50°1+sin50° j)=(5.01 km)i+(5.98 km)]
and the unknown C . Thus, A=B+C.

(a) The desired displacement is given by C = A-B=(-5.01km) {—(0.38 km) 3 The
magnitude is \/(=5.01 km)® +(—0.38 km)® =5.0 km.

(b) The angle is tan™'[(=0.38 km)/(=5.01 km)]=4.3°, south of due west.
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23. The strategy is to find where the camel is ( C ) by adding the two consecutive
displacements described in the problem, and then finding the difference between that

i
location and the oasis ( B ). Using the magnitude-angle notation

C =24 £ —15°)+ (8.0 £ 90°) = (23.25 £ 4.41°)
SO
B-C = (25 £ 0°)—(23.25 £ 4.41°) = (2.5 £ —45°)

which is efficiently implemented using a vector capable calculator in polar mode. The
distance is therefore 2.6 km.
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24. Let ,Z represent the first part of Beetle 1’s trip (0.50 m east or 0.5 i) and 5
represent the first part of Beetle 2’s trip intended voyage (1.6 m at 50° north of east). For

their respective second parts: B is 0.80 m at 30° north of east and D is the unknown.
The final position of Beetle 1 is
A+ B =(0.5m)i+(0.8 m)(cos30° i+sin30° j) = (1.19 m) i+(0.40 m)].
The equation relating these is A+B=C+D, where
C=(1.60 m)(cos50.0° +sin50.0°]) = (1.03 m)i+(1.23 m);

(a) We find D=A+B—C=(0.16 m)i+(~0.83 m)], and the magnitude is D = 0.84 m.

(b) The angle is tan™'(—0.83/0.16) =—79° which is interpreted to mean 79° south of
east (or 11° east of south).
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25. The resultant (along the y axis, with the same magnitude as 5 ) forms (along with

5 ) a side of an isosceles triangle (with § forming the base). If the angle between 5
and the y axis is @ =tan"'(3/4)=36.87°, then it should be clear that (referring to the
magnitudes of the vectors) B =2Csin(€/2). Thus (since C =5.0) we find B =3.2.
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26. As a vector addition problem, we express the situation (described in the problem

statement) as A+ B= (3A)3 , Where A4 =Aiand B=7.0m. Sincei J_j we may
use the Pythagorean theorem to express B in terms of the magnitudes of the other two
vectors:

B=~(34y + 4 = A=\/%B =22m.
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27. Let [, =2.0 cm be the length of each segment. The nest is located at the endpoint of
segment w.

(a) Using unit-vector notation, the displacement vector for point A is

—

d,=w+v+i +h=1(cos 60°i+sin60°j')+(l0 j‘)+10(cos120°i+sin120°j)+(10 j)

=(2+ \/g)lo 3
Therefore, the magnitude of d L, 18| d L1=2+ NE) )(2.0cm)=7.5cm.
(b) The angle of d, is 6 =tan™ d,,/d, )= tan~' (c0) =90°.

(c) Similarly, the displacement for point B is

d,=Ww+V+j+p+o
=/,(cos 60°1 +sin 60° j) + (ZO 3) +1,(cos 60°1 +sin60° j) +1,(cos 30°i +5in30° 3) + (lo i)

=2+V3/2), i+@3/2+3), ].

Therefore, the magnitude of d, is

1, | =1\ 2+V3/2) +(3/2+43)> = (2.0 cm)(4.3) = 8.6 cm.

(d) The direction of d, is

d
6, =tan_1( B’yJ=tan_1£3/2+\/§J=tan’l(l.l3)=48°.

2++/3/2

B,x
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28. Many of the operations are done efficiently on most modern graphical calculators
using their built-in vector manipulation and rectangular <> polar “shortcuts.” In this
solution, we employ the “traditional” methods (such as Eq. 3-6).

(a) The magnitude of @ isa =\/(4.0 m)>+(=3.0 m)> =5.0 m.

(b) The angle between @ and the +x axis is tan™' [(=3.0 m)/(4.0 m)] = —37°. The vector is
37° clockwise from the axis defined by 1.

(¢) The magnitude of b is b= \/(6.0 m)*>+(8.0 m)> =10 m.
(d) The angle between b and the +x axis is tan '[(8.0 m)/(6.0 m)] = 53°.

(6) d+b=(4.0 m+6.0 m)i+[(—3.0 m)+8.0 m]j =(10 m)i +(5.0 m)j. The magnitude

of this vector is |Ei+l; = \/(10 m)*+(5.0 m)* =11 m; we round to two significant
figures in our results.

(f) The angle between the vector described in part (e) and the +x axis is tan '[(5.0 m)/(10
m)] =27°.

(g) b—d=(6.0m—4.0m) i+[8.0 m—(=3.0 m)] j=(2.0 m) i+ (11 m) j. The magnitude

of this vector is |I;—ﬁ |= \/(2.0 m)’ +(11 m)> =11 m, which is, interestingly, the same
result as in part (e) (exactly, not just to 2 significant figures) (this curious coincidence is
made possible by the fact that @ | b ).

(h) The angle between the vector described in part (g) and the +x axis is tan '[(11 m)/(2.0
m)] = 80°.

(i) G—b=(4.0 m—6.0 m) i+[(-3.0 m)—8.0 m] j =(=2.0 m) i+(=11 m) j. The magnitude
of this vector is |G —b |=+/(=2.0 m)> +(~=11m)’* =11 m.

(j) The two possibilities presented by a simple calculation for the angle between the
vector described in part (i) and the +x direction are tan ' [(~11 m)/(-2.0 m)] = 80°, and
180° + 80° = 260°. The latter possibility is the correct answer (see part (k) for a further
observation related to this result).

(k) Since a b= (—1)(5 —a), they point in opposite (anti-parallel) directions; the angle
between them is 180°.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

29. Solving the simultaneous equations yields the answers:

(a) d

4d, =81+16],and

b) &b = dy =21+4].
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30. The vector equation is R=A + B+ C + D . Expressing B and D in unit-vector

notation, we have (1.69f + 3.633) m and (—2.87i + 4.103) m, respectively. Where the
length unit is not displayed in the solution below, the unit meter should be understood.

(a) Adding corresponding components, we obtain R= (-3.18 m)i +(4.72 m)j .

(b) Using Eq. 3-6, the magnitude is

| RI=/(=3.18 m)> +(4.72 m)’ =5.69 m.
(c) The angle is

6 =tan™"' (%J =-56.0° (with —x axis).
-3.18 m

If measured counterclockwise from +x-axis, the angle is then 180°—56.0°=124°. Thus,
converting the result to polar coordinates, we obtain

(-3.18,472) — (569 £ 124°)
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31. (a) As can be seen from Flgure 3-32, the point diametrically opposite the origin (0,0,0)
has position vector a i+a j+a k and this is the vector along the “body diagonal.”

(b) From the point (a, 0, 0) which corresponds to the position vector a 1, the diametrically
opposite point is (0, a, a) with the position vectora j + a k. Thus, the vector along the

line is the difference —ai+a3 +ak.

(c) If the starting point is (0, @, 0) with the corresponding position vector a 3 , the
diametrically opposite point is (a, 0, a) with the position vectora i+ ak. Thus, the

vector along the line is the difference a i- aj +ak.

(d) If the starting point is (a, a, 0) with the corresponding position vector a i+a 3, the
diametrically opposite point is (0, 0, a) with the position vector a k. Thus, the vector

along the line is the difference —a i— aj' +ak .

(e) Consider the vector from the back lower left corner to the front upper right corner. It
is a i+a j+a k. We may think of it as the sum of the vector a1 parallel to the x axis and

the vector a} +ak perpendicular to the x axis. The tangent of the angle between the
vector and the x axis is the perpendicular component divided by the parallel component.

Since the magnitude of the perpendicular component is va’+a’ = a2 and the
magnitude of the parallel component is a, tan8 = (a\/a )/ a=+/2. Thus 6 = 54.7°. The

angle between the vector and each of the other two adjacent sides (the y and z axes) is the
same as is the angle between any of the other diagonal vectors and any of the cube sides
adjacent to them.

(f) The length of any of the diagonals is given by va’ +a’ +a° = a3.
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32.(a) Witha=17.0 m and 8= 56.0° we find a, = a cos €=9.51 m.
(b) Similarly, a, = a sin 8= 14.1 m.

(c) The angle relative to the new coordinate system is 8" = (56.0° — 18.0°) = 38.0°. Thus,
a '=acos@'=13.4 m.

(d) Similarly, a," =asin " =10.5 m.
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33. (a) The scalar (dot) product is (4.50)(7.30)cos(320° — 85.0°) =— 18.8 .

(b) The vector (cross) product is in the k direction (by the right-hand rule) with
magnitude [(4.50)(7.30) sin(320° — 85.0°)| = 26.9 .
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34. First, we rewrite the given expression as 4( d;lane “ deross ) Where d;lane = d +
d, and in the plane of d, and d> , and duoss = dy % d> . Noting that duross 18

perpendicular to the plane of d, and d> , we see that the answer must be 0 (the scalar
[dot] product of perpendicular vectors is zero).
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35. We apply Eq. 3-30 and Eq.3-23. If a vector-capable calculator is used, this makes a
good exercise for getting familiar with those features. Here we briefly sketch the method.

(a) We note that 5x& =—8.01+5.0j+6.0k. Thus,

i-(b x &) =3.0)(—8.0)+ (3.0)(5.0)+(—2.0) (6.0)= —21.
(b) We note that & +¢ = 1.01 — 2.0] + 3.0k. Thus,

d-(b+¢)=(3.0) (1.0)+(3.0) (—2.0)+(—2.0) (3.0)=—9.0.
(c) Finally,

ax(b +&)=[(3.0)3.0)— (= 2.0)(—2.0)] i +[(—2.0)(1.0) = (3.0)(3.0)] j
+H(3.0)(—2.0)—(3.0)(1.0)] k
=5i— 11 — 9k
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36. We apply Eq. 3-30 and Eq. 3-23.

(a) a xb = (ab,—ab,) k since all other terms vanish, due to the fact that neither @ nor

b have any z components. Consequently, we obtain [(3.0)(4.0)— (5.0)(2.0)]12: 2.0k.
(b) a-b=ab, +ab, yields (3.0)(2.0) + (5.0)(4.0) = 26.
(c) G+b= (3.0 + 2.0)i + (5.0 + 4.0)j = (G +b)-b =(5.0) (2.0) + (9.0) (4.0) = 46.

(d) Several approaches are available. In this solution, we will construct a b unit-vector
and “dot” it (take the scalar product of it) with & . In this case, we make the desired unit-
vector by

=

A 2.01+4.0]
h=2 = :
bl J(2.0)° + (4.0)°

Sy

We therefore obtain

2 (3.0)(2.0) +(5.00(4.0) _

,=d-b
e {(2.0)° + (4.0)°

5.8.
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37. Examining the figure, we see that a+b+c=0, where a L b .

(a)| @ x B | = (3.0)(4.0) = 12 since the angle between them is 90°.

(b) Using the Right Hand Rule, the vector a xb points in the Ix} =k , or the +z direction.
©|axcl|=| ax(d — b)|=|-(axb)=12.

(d) The vector —axb points in the —ixj =k, or the — z direction.

| bxc|=|bx(—d - b)=|=(bxa)|=|(dxb)|=12.

(f) The vector points in the +z direction, as in part (a).
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38. The displacement vectors can be written as (in meters)

d, = (4.50 m)(cos 63° j+sin 63°k) = (2.04 m) j+(4.01 m)k
d, = (1.40 m)(cos30°1+sin 30°k) = (1.21 m)i+(0.70 m)k .

(a) The dot product of d, and d, is
d -d,=(2.04]+4.01k)-(1.21i+0.70k) = (4.01k)-(0.70k) = 2.81 m>.
(b) The cross product of d, and d, is

d xd,=(2.04j+4.01k)x(1.211+0.70k)
= (2.04)(1.21)(=K) + (2.04)(0.70)i + (4.01)(1.21)]
=(1.43 1+4.86 j—2.48k)m".

(c) The magnitudes of d, and d, are

d, =/(2.04 m)* +(4.01 m)* =4.50 m

d, =+/(1.21 m)* +(0.70 m)> =1.40 m.

Thus, the angle between the two vectors is

S ,
6 =cos™’ M =cos” 2.81m =63.5°.
dd, (4.50 m)(1.40 m)
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39. Since ab cos ¢ = a.b; + a,b, + a.b.,

ab, +ab, + ab,
ab

cosQ =

The magnitudes of the vectors given in the problem are

a =d|=+(3.007 + (3.00) + (3.00)* =5.20

b :|15|:\/(2.00)2 + (1.00)* + (3.00)° =3.74.
The angle between them is found from

(3.00)(2.00) + (3.00)(1.00) + (3.00)(3.00)
(5.20)(3.74)

=0.926.

cosQ =

The angle is ¢ = 22°.
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40. Using the fact that

we obtain
24 x B=2(2.00i+3.00j-4.00k }(~3.00i +4.00j+2.00k ) = 44.0i +16.0j+34.0k.

Next, making use of
we have

3C-(24xB)=3(7.001-8.00j)-(44.01+16.0j +34.0Kk)
=3[(7.00)(44.0)+(~8.00)(16.0) +(0) (34.0)] = 540.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

41. From the definition of the dot product between A and B , A-B=ABcosé , we have

cosﬁzﬂ
A

With 4=6.00, B=7.00and 4-B=14.0, cos@=0.333, or §=70.5°.
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42. Applying Eq. 3-23, F = gV x B (where g is a scalar) becomes
Fvi+Fy3 +Fk=gq (v,B. —szy)i+q (v.B,—v,B.)j+q (v.B,-v,B,) k

which — plugging in values — leads to three equalities:

40=2(4.0B, - 6.0B))
~20=2(6.0B, — 2.0B,)
12=2(2.0B, — 4.0B,)

Since we are told that B, = B,, the third equation leads to B, = —3.0. Inserting this value
into the first equation, we find B, = —4.0. Thus, our answer is

B=-3.0i-3.0]—4.0k.
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43. From the figure, we note that ¢ L b , which implies that the angle between ¢ and the
+x axis is 120°. Direct application of Eq. 3-5 yields the answers for this and the next few
parts.

(a) ay= acos 0°=a=3.00m.

(b) a,=asin 0° = 0.

(¢) by=>b cos 30° =(4.00 m) cos 30°=3.46 m.

(d) b, = b sin 30° = (4.00 m) sin 30° = 2.00 m.

(e) cx=c cos 120° = (10.0 m) cos 120° =—-5.00 m.

(f) ¢, =csin 30° = (10.0 m) sin 120° = 8.66 m.

(g) In terms of components (first x and then y), we must have

~5.00m = p (3.00 m)+q (3.46 m)
8.66 m = p (0)+¢ (2.00 m).

Solving these equations, we find p =—6.67.

(h) Similarly, g = 4.33 (note that it’s easiest to solve for g first). The numbers p and ¢
have no units.
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44. The two vectors are written as, in unit of meters,
d, =4.0i+5.0j=d,i+d, ], d,=-3.0i+4.0j=d,i+d, ]
(a) The vector (cross) product gives
d xd,=(d,d, —d, d, )k=[(4.0)(4.0)~(5.0)(-3.0)]k=31 k
(b) The scalar (dot) product gives
d-d,=d d, +d d, =(4.0)(=3.0)+(5.0)(4.0)=38.0.

(©)
@ +d,)-d,=d -d,+d>=8.0+(~3.0)> +(4.0)* =33.

(d) Note that the magnitude of the d; vector is/16+25 = 6.4. Now, the dot product is
(6.4)(5.0)cos@ = 8. Dividing both sides by 32 and taking the inverse cosine yields € =
75.5°. Therefore the component of the d, vector along the direction of the d, vector is
6.4cos@= 1.6.
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45. Although we think of this as a three-dimensional movement, it is rendered effectively
two-dimensional by referring measurements to its well-defined plane of the fault.

(a) The magnitude of the net displacement is

| AB|=+| ADF +| ACF =[(17.0 m)* +(22.0 m)* =27.8m.

(b) The magnitude of the vertical component of AB is |4D| sin 52.0° = 13.4 m.
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46. Where the length unit is not displayed, the unit meter is understood.

(a) We first note that a=|d|=+/(3.2)* +(1.6)° =3.58 and b=|13|=\/(0.50)2 +(4.5)° =4.53.

Now,
a-b=ab, +ab =abcos ¢
(3.2)(0.50)+(1.6) (4.5) = (3.58) (4.53) cos ¢

which leads to ¢ = 57° (the inverse cosine is double-valued as is the inverse tangent, but
we know this is the right solution since both vectors are in the same quadrant).

(b) Since the angle (measured from +x) for @ is tan '(1.6/3.2) = 26.6°, we know the
angle for ¢ is 26.6° —90° = —63.4° (the other possibility, 26.6° + 90° would lead to a ¢, <
0). Therefore,
¢y =c cos (—63.4° )= (5.0)(0.45) =2.2 m.
(c) Also, ¢, = ¢ sin (—63.4°) = (5.0)( —0.89) = - 4.5 m.
(d) And we know the angle for d to be 26.6° + 90° = 116.6°, which leads to
dy= d cos(116.6°) =(5.0)( -0.45) =-2.2 m.

(e) Finally, d, = d sin 116.6° = (5.0)(0.89) = 4.5 m.
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47. We apply Eq. 3-20 and Eq. 3-27.

(a) The scalar (dot) product of the two vectors is

S

a-

= abcos ¢ = (10)(6.0) cos 60° = 30.
(b) The magnitude of the vector (cross) product of the two vectors is

|axb | =absin ¢ = (10) (6.0) sin 60° = 52.
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48. The vectors are shown on the diagram. The x axis runs from west to east and the y
axis runs from south to north. Then a, = 5.0 m, a, = 0, b, = —(4.0 m) sin 35° = -2.29 m,
and b, = (4.0 m) cos 35°=3.28 m.

(a)Let ¢ =G +b.Then ¢, =a,+b=5.00m —229m=2.71 m and

¢,=a,+b=0+328m=3.28 m. The magnitude of c is

=+ =(271m)" + (3.28m)’ =42 m.

(b) The angle @that ¢ =a + b makes with the +x axis is

O =tan"' S =tan"' ﬁ =50°.
c, 2.71

The second possibility (8= 50.4° + 180° = 230.4°) is rejected because it would point in a
direction opposite to ¢ .

(c) The vector b — a is found by adding —a to b. The result is shown on the diagram to

the right. Let ¢ = b — a. The components are ¢, =b_—a_=-2.29 m—5.00 m =-7.29 m,

andc, =b, —a, =3.28 m. The magnitude of ¢ is ¢ =,/c] +¢; =8.0m.

W

(d) The tangent of the angle @that ¢ makes with the +x axis (east) is

ang="r =328 M _ 450
c -7.29 m

X

There are two solutions: —24.2° and 155.8°. As the diagram shows, the second solution is
correct. The vector ¢ =—a+b is 24° north of west.
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49. We choose +x east and +y north and measure all angles in the “standard” way
(positive ones are counterclockwise from +x). Thus, vector d, has magnitude d; = 4.00 m

(with the unit meter) and direction 6 = 225°. Also, c?z has magnitude d> = 5.00 m and

direction & = 0°, and vector c@ has magnitude d; = 6.00 m and direction & = 60°.
(a) The x-component of Jl isdi,=d) cos 6 =-2.83 m.
(b) The y-component of d, is di, = d, sin 6 =—2.83 m.
(c) The x-component of 32 1S doy =d> cos 6 =5.00 m.
(d) The y-component of d, is dy, = d, sin 6 = 0.
(e) The x-component of c§3 is dzx = d5 cos 65 =3.00 m.
(f) The y-component of c?3 is d3, = d3 sin 65 =5.20 m.
(g) The sum of x-components is

de=dix+dyn+ds, =-283m+500m+3.00m=5.17 m.
(h) The sum of y-components is

dy=di,+dy+d; =283m+0+520m=237m.

(1) The magnitude of the resultant displacement is

d=\d}+d? =\(5.17 m)* +(2.37 m)’ =5.69 m,

(j) And its angle is 8= tan ' (2.37/5.17) = 24.6° which (recalling our coordinate choices)
means it points at about 25° north of east.

(k) and (1) This new displacement (the direct line home) when vectorially added to the
previous (net) displacement must give zero. Thus, the new displacement is the negative,
or opposite, of the previous (net) displacement. That is, it has the same magnitude (5.69
m) but points in the opposite direction (25° south of west).
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50. From the figure, it is clear that d+b+c= 0, where alb.
(a) a - b = 0since the angle between them is 90°.
- > - - 2

by a-c=a-(-a-b)=-al =-16.

(¢) Similarly, 5 - ¢ = —9.0.
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51. Let A—> represent the first part of his actual voyage (50.0 km east) and 5 represent
the intended voyage (90.0 km north). We are looking for a vector 5 such that A—> + B—>
- C.

(a) The Pythagorean theorem yields B = \/ (50.0 km)*+(90.0 km)* =103 km.

(b) The direction is tan '(50.0 km/90.0 km)=29.1° west of north (which is
equivalent to 60.9° north of due west).
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52. If we wish to use Eq. 3-5 directly, we should note that the angles for O, R and S are
100°, 250° and 310°, respectively, if they are measured counterclockwise from the +x

axis.

(a) Using unit-vector notation, with the unit meter understood, we have

P=10.0 cos(25.0°)1+10.0sin (25.0°) ]
=12.0c0s(100°)1+12.0sin (100°) ]
=8.00cos (250°)1+8.00sin (250°) ]

§ =9.00c0s(310°)i+9.00sin (310°) ]

P+O+R+5=(10.0m)i+(1.63 m)]

(b) The magnitude of the vector sum is \/(10.0 m)’ + (1.63 m)* =10.2 m.

(c) The angle is tan™' (1.63 m/10.0 m) = 9.24° measured counterclockwise from the +x
axis.
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53. Noting that the given 130° is measured counterclockwise from the +x axis, the two
vectors can be written as

A=8.00(cos130°1 +5sin130°j) = —5.141+6.13 ]
B=B,i+B,j=-7.72i-9.20].

(a) The angle between the negative direction of the y axis (—3' ) and the direction of 4 is

6 =cos™ ACD | cos” 613 =cos™ (ﬂj =140°.
A J(=5.14) +(6.13)? 8.00

Alternatively, one may say that the —y direction corresponds to an angle of 270°, and the
answer is simply given by 270°—130° = 140°.

(b) Since the y axis is in the xy plane, and AX B is perpendicular to that plane, then the
answer is 90.0°.

(c) The vector can be simplified as

AX(B+3.00k) =(=5.141+6.13])x(=7.721—9.20 j+3.00k)
=18.391+15.427+94.61k

Its magnitude is | ZX(E+3.00E) |=97.6. The angle between the negative direction of the

y axis (—3' ) and the direction of the above vector is

6 =cos™ (_15'42J =99.1°,
97.6
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54. The three vectors are

d,=—1.01+2.0j+3.0k
d,=4.0i+3.0j+2.0k

(a) F=d,—d, +d,=(9.0 m)i+(6.0 m)j+ (7.0 m)k .
= 12.9m. The

(b) The magnitude of s |7 |= \/(9.0 m)* +(6.0 m)’ +(=7.0 m)’
angle between 7 and the z-axis is given by

Fk_—70m_ o,
|7

cosf = =
v 129 m

which implies 8 =123°.
(c) The component of c?l along the direction of c?z is given by d, = c?l -u=d,cos @ where

@is the angle between d,and d,, and 1is the unit vector in the direction of d,. Using

the properties of the scalar (dot) product, we have
-3.2 m

d-d
d':dl[c}dz
12

d, J(=1.0)° +(2.0 +(3.0)’
(d) Now we are looking for d, such that d =(4.0) +(5.0)’ +(-=6.0)’ =77 =d; +d;

_d,-d, _ (4.0)(-1.0)+(5.0)(2.0)+(=6.0)(3.0) _ 12 _
N

From (c), we have

d, =77 m*~(-3.2 m)> =8.2 m.

This gives the magnitude of the perpendicular component (and is consistent with what
one would get using Eq. 3-27), but if more information (such as the direction, or a full

specification in terms of unit vectors) is sought then more computation is needed.
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55. The two vectors are given by

A=8.00(cos130°1 +5sin130° ) =—5.141+6.13 ]
B=Bi+B,j=-7.721-9.20].

(a) The dot product of 54-Bis

54-B=5(-5.141+6.13])-(=7.721=9.20 ]) = 5[(=5.14)(—7.72) + (6.13)(=9.20)]
=—83.4.

(b) In unit vector notation
4Ax3B=12A4A% B =12(-5.141+6.13])x(=7.721-9.20 J) = 12(94.6 k) = 1.14x10° k

(c) We note that the azimuthal angle is undefined for a vector along the z axis. Thus, our
result is “1.14x10°, @not defined, and ¢=0°.”

(d) Since A is in the xy plane, and Ax B is perpendicular to that plane, then the answer is
90°.

(¢) Clearly, 4 +3.00k =-5.14}+6.13 ] +3.00 k.

(f) The Pythagorean theorem yields magnitude Az\/(5.14)2 +(6.13)*+(3.00)* =8.54 .

The azimuthal angle is & = 130°, just as it was in the problem statement ( A is the
projection onto to the xy plane of the new vector created in part (¢)). The angle measured
from the +z axis is ¢= cos™'(3.00/8.54) = 69.4°.
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56. The two vectors d, and d,are given by d, = —d, jand d,=d, i

(a) The vector c?z /4=(d, /4)i points in the +x direction. The Y4 factor does not affect the

result.

(b) The vector c?l (-4)=(d,/ 4)3’ points in the +y direction. The minus sign (with the “-4")
does affect the direction: —(—y) =+ y.

(c) d,-d, =0since i-7=0. The two vectors are perpendicular to each other.
(d) d,-(d,/4)=(d,-d,)/4=0, as in part (c).

(¢) d,xd, =—d,d,(jxi)=d,d, k, in the +z-direction.

(f) d,xd =—d,d,(ix])=—d,d, k, in the —z-direction.

(g) The magnitude of the vector in (e) is d,d, .

(h) The magnitude of the vector in (f) is d/d, .
(i) Since d,x(d,/4)=(dd, /4)k , the magnitude is dd, /4.

(j) The direction of d,x(d, /4) = (d,d,/4)k is in the +z-direction.
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57. The three vectors are
d =-3.01+3.0j+2.0k

d,=-2.01-4.0]+2.0k
d,=2.01+3.0j+1.0k.

(a) Since 672 +J3 =0f—1.03+3.0f<,we have

d (dy+d,)=(-3.01+3.0j+2.0k)- (01 —1.0j+3.0k)
=0-3.0+6.0=3.0 m’.

(b) Using Eq. 3-30, we obtain d, xd, =—101+6.0j+2.0k. Thus,

d -(dyxd,)=(-3.01+3.0j+2.0k)-(~101+6.0 j+2.0k)
=30+18+4.0=52 m".

(c) We found d + d in part (a). Use of Eq. 3-30 then leads to

d x(d,+d;)=(-3.01+3.0j+2.0k)x(0i—1.0j+3.0k)
=(11i+9.0j+3.0k ) m’
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58. We choose +x east and +y north and measure all angles in the ‘“standard” way
(positive ones counterclockwise from +x, negative ones clockwise). Thus, vector Jl has
magnitude d, = 3.66 (with the unit meter and three significant figures assumed) and
direction 6, = 90°. Also, Jz has magnitude d, = 1.83 and direction & = —45°, and vector

C_i3 has magnitude ds = 0.91 and direction & = —135°. We add the x and y components,
respectively:

x: d,cos 6 +d,cos b, +d,cos 8, =0.65m

y:d,sin @ +d,sin 6, +d,sin 6, =1.7 m.

— — —

(a) The magnitude of the direct displacement (the vector sum d, + d, + d;) is

J(0.65 m)* +(1.7m)* =1.8 m,

(b) The angle (understood in the sense described above) is tan™' (1.7/0.65) = 69°. That is,
the first putt must aim in the direction 69° north of east.
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59. The vectors can be written as @ = ai and b = bj where a, b>0.

E_(éjf
d \d))

in the case d > 0. Since the coefficient of 3 is positive, then the vector points in the +y

(a) We are asked to consider

direction.

(b) If, however, d < 0, then the coefficient is negative and the vector points in the —y
direction.

(c) Since cos 90° =0, then & - b =0, using Eq. 3-20.

(d) Since bld is along the y axis, then (by the same reasoning as in the previous part)
a-(b/d)=0.

(e) By the right-hand rule, a x b points in the +z-direction.

(f) By the same rule, b xd points in the —z-direction. We note that bxd=—-axb is
true in this case and quite generally.

(g) Since sin 90° = 1, Eq. 3-27 gives |a xb |=ab where a is the magnitude of a .
(h) Also, |@ x b| = |b x d| = ab.
(1) With d > 0, we find that a x (l;/ d) has magnitude ab/d.

(j) The vector a@x(b/d) points in the +z direction.
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60. The vector can be written as d = (2.5 m)j, where we have taken jto be the unit
vector pointing north.

(a) The magnitude of the vector a =4.0 d is (4.0)(2.5m)=10m.
(b) The direction of the vector a = 4.0d is the same as the direction of d (north).
(c) The magnitude of the vector ¢ =— 3.0d is (3.0)(2.5 m) = 7.5 m.

(d) The direction of the vector ¢ =— 3.0d is the opposite of the direction of d . Thus, the
direction of ¢ is south.
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61. We note that the set of choices for unit vector directions has correct orientation (for a
right-handed coordinate system). Students sometimes confuse “north” with “up”, so it
might be necessary to emphasize that these are being treated as the mutually
perpendicular directions of our real world, not just some “on the paper” or “on the
blackboard” representation of it. Once the terminology is clear, these questions are basic
to the definitions of the scalar (dot) and vector (cross) products.

(a) 1-k=0 since i Lk

(b) (=k)-(=3)=0 since k L j.
(©) j-(=j=-1.

(d) kxj=-1 (west).

(e) (-D)x(—))=+k (upward).

(D (-k)x(=j)=-1 (west).
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62. (a) The vectors should be parallel to achieve a resultant 7 m long (the unprimed case
shown below),

(b) anti-parallel (in opposite directions) to achieve a resultant 1 m long (primed case
shown),

(c) and perpendicular to achieve a resultant v/3° +4”> = 5m long (the double-primed case
shown).

In each sketch, the vectors are shown in a “head-to-tail” sketch but the resultant is not
shown. The resultant would be a straight line drawn from beginning to end; the beginning
is indicated by A4 (with or without primes, as the case may be) and the end is indicated by
B.

L)

21F ¥}

T

Ea

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

63. A sketch of the displacements is shown. The resultant (not shown) would be a
straight line from start (Bank) to finish (Walpole). With a careful drawing, one should
find that the resultant vector has length 29.5 km at 35° west of south.

1arik

Wiat Lt

Wilpale

Saill
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64. The point P is displaced vertically by 2R, where R is the radius of the wheel. It is
displaced horizontally by half the circumference of the wheel, or TR. Since R = 0.450 m,
the horizontal component of the displacement is 1.414 m and the vertical component of
the displacement is 0.900 m. If the x axis is horizontal and the y axis is vertical, the

vector displacement (in meters) is ;7=(1.414 i+0.900 3) The displacement has a

7|=(7R)’ +(2R)’ = RN +4 =1.68m

tan™! (Z—Rj =tan"' (Ej =32.5°
TR T

above the floor. In physics there are no “exact” measurements, yet that angle computation
seemed to yield something exact. However, there has to be some uncertainty in the
observation that the wheel rolled half of a revolution, which introduces some
indefiniteness in our result.

magnitude of

and an angle of
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65. Reference to Flgure 3-18 (and the accompanying material in that section) is helpful.
If we convert B to the magnitude-angle notation (as A already is) we have
B = (14.4 Z 33.70) (appropriate notation especially if we are using a vector capable

calculator in polar mode). Where the length unit is not displayed in the solution, the unit
meter should be understood. In the magnitude-angle notation, rotating the axis by +20°
amounts to subtracting that angle from the angles previously specified. Thus,

A= (12.0 V4 40.00), and B = (144 £ 13.7°), where the ‘prime’ notation indicates that

the description is in terms of the new coordinates. Converting these results to (x, y)
representations, we obtain

() A=(9.19m) 1 +(7.71m) .

(b) Similarly, B=(14.0 m)i+(3.41 m) 7.
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66. The diagram shows the displacement vectors for the two segments of her walk,

labeled 4 and B, and the total (“final”) displacement vector, labeled 7 . We take east to
be the +x direction and north to be the +y direction. We observe that the angle between

A and the x axis is 60°. Where the units are not explicitly shown, the distances are
understood to be in meters. Thus, the components of 4 are 4, = 250 cos60° = 125 and 4,

=250 sin60° = 216.5. The components of B are B,=175 and B, = 0. The components of
the total displacement are

re= Ay + By =125 + 175 = 300
ry=Ay+B,=216.5+0=216.5.

“nith 7l

Cast

(a) The magnitude of the resultant displacement is

|Fl=\rl +77 =J(300 m)* +(216.5 m)> =370m,

(b) The angle the resultant displacement makes with the +x axis is

tan™' 3 =tan"' 2165 m =36°.
r, 300 m

The direction is 36° north of due east.
(¢) The total distance walked is d =250 m + 175 m = 425 m.

(d) The total distance walked is greater than the magnitude of the resultant displacement.
The diagram shows why: A and B are not collinear.
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67. The three vectors given are
i= 5.0i+4.0]-6.0k
b=-2.01+2.0j+3.0k
i= 4.01+3.0j+2.0k

(a) The vector equation 7 = a — b+¢is

7 =[5.0-(=2.0)+4.0]i+(4.0—2.0+3.0)j+(—=6.0—3.0+2.0)k
=11i+5.0j—7.0k.

(b) We find the angle from +z by “dotting” (taking the scalar product) ¥ with k. Noting
that » = |F| = J(11.0)2 +(5.0)> +(=7.0)> =14, Eq. 3-20 with Eq. 3-23 leads to

Fk=-70=(14)(1)cos¢ = ¢=120°.

(c) To find the component of a vector in a certain direction, it is efficient to “dot” it (take
the scalar product of it) with a unit-vector in that direction. In this case, we make the
desired unit-vector by

. ~2.0i+2.0j+3.0k
b1 (2.0 + (2.0 + (3.0

| =

S

We therefore obtain

o —g-p= 5020+ (40)(20) + (60)(30) __, o

J(22.0) + (2.0 +(3.09

(d) One approach (if all we require is the magnitude) is to use the vector cross product, as
the problem suggests; another (which supplies more information) is to subtract the result
in part (¢) (multiplied by l;) from a . We briefly illustrate both methods. We note that if
a cos @ (where @is the angle between a and b) gives a; (the component along Z;) then
we expect a sin @to yield the orthogonal component:

‘dxl;‘ _ 23

asin@ =
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(alternatively, one might compute € form part (c) and proceed more directly). The second
method proceeds as follows:

G—a b=(50-235)i+ (40 — (=2.35))] + ((—=6.0) — (=3.53))k
b =( )i + (4.0 — (-235)); + ((-6.0) — (-353))
=2.651 + 635] — 247k

This describes the perpendicular part of a completely. To find the magnitude of this part,
we compute

J(2.65) + (6.35) + (—2.47)* = 7.3

which agrees with the first method.
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68. The two vectors can be found be solving the simultaneous equations.

(a) If we add the equations, we obtain 2a = 6¢ , which leads to a =3¢ =9 i+ 123’ .

(b) Plugging this result back in, we find 5 =& =3i + 4].

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

69. (a) This is one example of an answer: (—401— 20 j + 25 k) m, with 1 directed anti-
parallel to the first path, j directed anti-parallel to the second path and k directed upward
(in order to have a right-handed coordinate system). Other examples are (40 1+ 20 ] + 25
k) m and (401 — 20 j — 25 k) m (with slightly different interpretations for the unit
vectors). Note that the product of the components is positive in each example.

(b) Using Pythagorean theorem, we have \/ (40 m)> +(20 m)*> =44.7m =45 m.
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70. The vector d (measured in meters) can be represented as d= (3.0 m)(—}') , Where —3
1s the unit vector pointing south. Therefore,

5.0d =5.0(-3.0m j)=(-15m)].

(a) The positive scalar factor (5.0) affects the magnitude but not the direction. The
magnitude of 5.0d is 15 m.

(b) The new direction of 5d is the same as the old: south.
The vector —2.0d can be written as —2.0d = (6.0 m) 3

(c) The absolute value of the scalar factor (|-2.0| = 2.0) affects the magnitude. The new
magnitude is 6.0 m.

(d) The minus sign carried by this scalar factor reverses the direction, so the new
direction is +], or north.
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RN

71. Given: 4 +B = 601+1.0] and 4 - B = - 401+ 7.0] . Solving these

simultaneously leads to A =1.01+ 4.0). The Pythagorean theorem then leads to

A=./(1.0)* +(4.0)* =4.1.
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72. The ant’s trip consists of three displacements:

d, = (0.40 m)(cos 225°1 +sin 225°j) = (=0.28 m)i+(~0.28 m) ]
d,=(0.50 m)i
d, = (0.60 m)(cos 60°1 +sin 60° j) = (0.30 m)i+(0.52 m)j,

where the angle is measured with respect to the positive x axis. We have taken the
positive x and y directions to correspond to east and north, respectively.

(a) The x component of d? is d,, =(0.40 m)cos225°=-0.28 m.
(b) The y component of c?l is d,, =(0.40 m)sin 225°=-0.28 m.
(c) The x component of d, is d,, =0.50 m .

(d) The y component of c?z isd,, =0m.

(e) The x component of d; is d,_ =(0.60 m)cos60°=0.30 m.
(f) The y component of 673 is d;, =(0.60 m)sin60°=0.52 m.

(g) The x component of the net displacement d_ is

net

d. . =d,_ +d, +d, =(-0.28m)+(0.50 m)+(0.30 m)=0.52 m.

net,x
(h) The y component of the net displacement JM 1s

dpy,=d,+d, +d;, =(-0.28 m)+(0 m)+(0.52 m)=0.24 m.

net,y

(1) The magnitude of the net displacement is

d,, =\d., +d., =052m)+(024m)’ =057 m.

net,x net,y

(j) The direction of the net displacement is

2m

net,x

d
6 =tan"' (L’y] =tan”' (8?4 mj =25° (north of east)

If the ant has to return directly to the starting point, the displacement would be —czm .

(k) The distance the ant has to travel is | —d 0.57 m.

net ’_

(1) The direction the ant has to travel is 25° (south of west) .
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1. The initial position vector 7, satisfies 7 —7 = A7, which results in

7 =F—AF =(3.0] — 4.0k)m — (2.0i — 3.0j + 6.0k)m = (2.0 m)i+ (6.0 m) ] +(—10 m)k..
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2. (a) The position vector, according to Eq. 4-1, is 7 = (—5.0 m) i+ (8.0 m)}.

(b) The magnitude is |7 [= y/x* +y* +2> =/(=5.0 m)> +(8.0 m)> +(0 m)’ = 9.4 m.

(c) Many calculators have polar <> rectangular conversion capabilities which make this
computation more efficient than what is shown below. Noting that the vector lies in the
xy plane and using Eq. 3-6, we obtain:

Q:tan_l( 8.0m j:—58° or 122°

—5.0m

where the latter possibility (122° measured counterclockwise from the +x

.‘.
direction) is chosen since the signs of the components imply the vector is 0
in the second quadrant. '~"5:’ |
A
(d) The sketch is shown on the right. The vector is 122° counterclockwise PRl i
from the +x direction. R A S .
o

(e) The displacement is A7 =7 —7 where 7 is given in part (a) and :
7 = (3.0 m)i. Therefore, A7 = (8.0 m)i — (8.0 m)j.

(f) The magnitude of the displacement is | A¥ |= \/(8.0 m)’+(-8.0m)> =11 m.

(g) The angle for the displacement, using Eq. 3-6, is

tan™ ( 8éOOm j = —45° or 135°
-8.0m

where we choose the former possibility (—45°, or 45° measured clockwise
from +x) since the signs of the components imply the vector is in the =~
fourth quadrant. A sketch of A7 is shown on the right.
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3. (a) The magnitude of 7 is

|7 |= /(5.0 m)> +(—=3.0 m)> +(2.0 m)> =6.2 m.

(b) A sketch is shown. The coordinate values are in
meters.
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4. We choose a coordinate system with origin at the E
clock center and +x rightward (towards the “3:00” v
position) and +y upward (towards “12:00”).

(a) In unit-vector notation, we have 7 = (10 cm)f and 7, = (-10 cm)}'. Thus, Eq. 4-2 gives

AF =7 —F =(—10 cm)i +(~10 cm)j].

and the magnitude is given by | A7 |= \/(—10 cm)’ +(=10 cm)* =14 cm.
(b) Using Eq. 3-6, the angle is

—-10 cm

Hztan"l[
—-10 cm

):45o or —135°.

We choose —135°since the desired angle is in the third quadrant. In terms of the
magnitude-angle notation, one may write

AF=F —F=(-=10 cm)i +(—=10 cm)j — (I14cmZ —135°).

(¢c) In this case, we have 7, = (10 cm)j and 7, = (10 cm)}', and A7 =(20 cm)}. Thus,
|A7 |=20 cm.

(d) Using Eq. 3-6, the angle is given by

6=tan™" [20 ch =90°.
Ocm

(e) In a full-hour sweep, the hand returns to its starting position, and the displacement is
Zero.

(f) The corresponding angle for a full-hour sweep is also zero.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

5. Using Eq. 4-3 and Eq. 4-8, we have

_ (=2.0i+8.0j— 2.0k)m — (5.0i — 6.0j +2.0k) m

Vg " = (—0.70i +1.40j — 0.40k) m/s.
S
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6. To emphasize the fact that the velocity is a function of time, we adopt the notation v(¢)
for dx/dt.

(a) Eq. 4-10 leads to

W) = % (3.004i —4.00¢%] + 2.00k) = (3.00 m/s)i —(8.00¢ m/s) j

(b) Evaluating this result at # = 2.00 s produces v = (3.00§ — 16.03) m/s.

(c) The speed at t=2.00 s is v =[i|= \/(3.00 m/s)’ +(=16.0 m/s)* =16.3 m/s.
(d) The angle of v at that moment is

» [—16.0 m/s
an S SEEEE—

=-79.4° or 101°
3.00 m/s

where we choose the first possibility (79.4° measured clockwise from the +x direction, or
281° counterclockwise from +x) since the signs of the components imply the vector is in
the fourth quadrant.
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7. The average velocity is given by Eq. 4-8. The total displacement A7 is the sum of
three displacements, each result of a (constant) velocity during a given time. We use a
coordinate system with +x East and +y North.

(a) In unit-vector notation, the first displacement is given by

A7 = 60.0 km ) (40.0min )2 4 0 k)i,
h 60 min/h

The second displacement has a magnitude of (60.0 ¥2).(234miny —20.0 km, and its

direction is 40° north of east. Therefore,
AF, =(20.0 km) c0s(40.0°)1 +(20.0 km) sin(40.0°) j=(15.3 km)i +(12.9 km) .

And the third displacement is

A7, = 60,0 K| [ 200mMIn ) 2 5 6 myi,
h 60 min/h

The total displacement is

AF = AF +AF, +AF, = (40.0 km)i+(15.3 km)i+(12.9 km) j —(50.0 km) i
=(5.30 km) 1+(12.9 km) ].

The time for the trip is (40.0 + 20.0 + 50.0) min = 110 min, which is equivalent to 1.83 h.
Eq. 4-8 then yields

V, :(5'30 kmji + (12'9 kmj 7 =1(2.90 km/h)i + (7.01 km/h) .
={ 1.83h 1.83 h

The magnitude is
|9,., |=4/(2.90 kn/h)* +(7.01 km/h)* = 7.59 km/h.

avg

(b) The angle is given by

9—tan_l(7'01 km/h

—————— |=67.5° (north of east),
2.90 km/h

or 22.5° east of due north.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

8. Our coordinate system has i pointed east and 3 pointed north. The first displacement
is 7,, = (483 km)f and the second is 7. =(—966 km)j.

(a) The net displacement is

Foo =Fp +Fpe = (483 km)i—(966 km)j

which yields | 7, |:\/(483 km)’> +(-966 km)’ =1.08x10° km.

(b) The angle is given by

g =tan- | 200 KM _ o3 40,
483 km

We observe that the angle can be alternatively expressed as 63.4° south of east, or 26.6°
east of south.

(c) Dividing the magnitude of 7,. by the total time (2.25 h) gives

(483 km)i—(966 km)j

» oot = (215 km/h)i — (429 km/h)].

with a magnitude |V, \/(2 15 km/h)* +(-429 km/h)* =480 km/h.

avg |:

(d) The direction of v, is 26.6° east of south, same as in part (b). In magnitude-angle
notation, we would have v, =(480 km/h £ —63.4°).

(e) Assuming the 4B trip was a straight one, and similarly for the BC trip, then |7, | is the
distance traveled during the 4B trip, and |7,.| 1s the distance traveled during the BC trip.
Since the average speed is the total distance divided by the total time, it equals

483 km + 966 km
225h

= 644 km/h.
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9. The (x,y) coordinates (in meters) of the points are 4 = (15, —15), B = (30, —45), C = (20,
—15), and D = (45, 45). The respective times are £, =0, t3 =300s, tc =600 s, and 7, =
900 s. Average velocity is defined by Eq. 4-8. Each displacement Ar is understood to
originate at point 4.

(a) The average velocity having the least magnitude (5.0 m/600 s) is for the displacement
ending at point C: |v 0.0083 m/s.

avg |:

(b) The direction of v,,, is 0° (measured counterclockwise from the +x axis).

(c) The average velocity having the greatest magnitude (\/(15 m)*>+(30 m)* /3005s) is

for the displacement ending at point B: |V 0.11 m/s.

avg |:

(d) The direction of v, is 297° (counterclockwise from +x) or —63° (which is

equivalent to measuring 63° clockwise from the +x axis).
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10. We differentiate 7 =5.00¢1+ (et + f1°)].

(a) The particle’s motion is indicated by the derivative of 7P = 5001+ (e t 2ft)j .
The angle of its direction of motion is consequently

6= tan"' (v, /v, ) = tan"'[(e + 2£#)/5.00].
The graph indicates €, = 35.0° which determines the parameter e:

e =(5.00 m/s) tan(35.0°) = 3.50 m/s.

(b) We note (from the graph) that &= 0 when ¢ = 14.0 s. Thus, e + 2ft = 0 at that time.
This determines the parameter f:

_—e —-3.5m/s

== =-0.125m/s’.
2t 2(14.05)

f
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11. We apply Eq. 4-10 and Eq. 4-16.

(a) Taking the derivative of the position vector with respect to time, we have, in SI units
(m/s),
di(i+4tzj +1k)=8tj+k.

t

‘7:

(b) Taking another derivative with respect to time leads to, in SI units (m/s?),
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12. We use Eq. 4-15 with v, designating the initial velocity and v, designating the later

one.

(a) The average acceleration during the Ar = 4 s interval is

. (=2.01-2.0]+5.0k) m/s—(4.01—22j+3.0k) m/s
e 45

=(-1.5m/s?)i+(0.5m/s?)k.

(b) The magnitude of a,,, is \/(—1.5 m/s*)” +(0.5 m/s*)* =1.6m/s>.

(c) Its angle in the xz plane (measured from the +x axis) is one of these possibilities:

2
tan”! [%) = —18° or 162°
—1. S

where we settle on the second choice since the signs of its components imply that it is in
the second quadrant.
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13. In parts (b) and (c), we use Eq. 4-10 and Eq. 4-16. For part (d), we find the direction
of the velocity computed in part (b), since that represents the asked-for tangent line.

(a) Plugging into the given expression, we obtain
Pl o= [2-00(8)—5.00(2)]i + [6.00—7.00(16)]] = (6.00i — 106j) m
(b) Taking the derivative of the given expression produces
() = (6.00£> — 5.00)1 — 28.0¢

where we have written v(¢) to emphasize its dependence on time. This becomes, at
t=2.00s, v =(19.01 — 224]) m/s.

(c) Differentiating the v(¢) found above, with respect to ¢ produces 12.0¢1—84.0¢3 3,
which yields @ =(24.01—336]) m/s* at 1 =2.00s.

(d) The angle of v, measured from +x, is either

[ =224 m/s
an” | ———
19.0 m/s

J=—85.2° or 94.8°

where we settle on the first choice (—85.2°, which is equivalent to 275° measured
counterclockwise from the +x axis) since the signs of its components imply that it is in
the fourth quadrant.
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14. We adopt a coordinate system with i pointed east and 3 pointed north; the

coordinate origin is the flagpole. We “translate” the given information into unit-vector
notation as follows:

7=(40.0m)i and ¥,=(-10.0 m/s)]
F=(40.0m)j and ¥=(10.0 m/s)i.

(a) Using Eq. 4-2, the displacement A7 is

AF =F—F = (~40.0 m)i+(40.0 m)].

with a magnitude | A7 |= \/(—40.0 m)’ +(40.0 m)* =56.6 m.

(b) The direction of A7 1is

0 =tan"| 2 :tan_'[M —_45.0° or 135°.
Ax —40.0 m

Since the desired angle is in the second quadrant, we pick 135°(45° north of due west).
Note that the displacement can be written as AF =7 — 7 = (56.6 £135°) in terms of the

magnitude-angle notation.

(c) The magnitude of v, , is simply the magnitude of the displacement divided by the
time (A¢ = 30.0 s). Thus, the average velocity has magnitude (56.6 m)/(30.0 s) = 1.89 m/s.

(d) Eq. 4-8 shows that v, points in the same direction as Ar, i.e, 135°(45° north of

due west).
(e) Using Eq. 4-15, we have

i =Y ;tvo =(0.333 m/s?)i +(0.333 m/s>)j.

avg

The magnitude of the average acceleration vector is therefore equal to
|G,y | = \/(0.333 m/s*)* +(0.333 m/s*)> =0.471 m/s”.

() The direction of a,,, is

6—tan_l£0'333 m/s>

0333 m/S2j=45° or —135°.

Since the desired angle is now in the first quadrant, we choose 45°, and 4,,, points

north of due east.
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15. We find ¢ by applying Eq. 2-11 to motion along the y axis (with v, = 0 characterizing
Y = Vmax )’

0=(12m/s)+ (2.0 m/s’)t = =6.0s.
Then, Eq. 2-11 applies to motion along the x axis to determine the answer:

Ve = (8.0 m/s) + (4.0 m/s>)(6.0 s) = 32 m/s.

Therefore, the velocity of the cart, when it reaches ¥ = yiax , is (32 m/s)i.
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. 1
16. We find ¢ by solving Ax = x, +v, ¢ + B at’:

12.0 m=0+(4.00 m/s)t+%(5.00 m/s*)t

where we have used Ax = 12.0 m, v, = 4.00 m/s, and a, = 5.00 m/s’ . We use the
quadratic formula and find # = 1.53 s. Then, Eq. 2-11 (actually, its analog in two
dimensions) applies with this value of z. Therefore, its velocity (when Ax = 12.00 m) is

V=7, +ar = (4.00 m/s)i +(5.00 m/s?)(1.53 )i + (7.00 m/s*)(1.53 s)]
=(11.7 m/s)i +(10.7 m/s) j.

Thus, the magnitude of v is |V |= \/(1 1.7 m/s)* +(10.7 m/s)* =15.8 m/s.

(b) The angle of v, measured from +x, is

B (10.7 m/s
an E—

=42.6°.
11.7 m/s
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17. Constant acceleration in both directions (x and y) allows us to use Table 2-1 for the
motion along each direction. This can be handled individually (for Ax and Ay) or together
with the unit-vector notation (for Ar). Where units are not shown, SI units are to be
understood.

(a) The velocity of the particle at any time ¢ is given by v =V, +at, where v, is the
initial velocity and a is the (constant) acceleration. The x component is v, = vo, + a,f =
3.00 — 1.00¢, and the y component is
vy, = voy + ayt = —0.500¢

since voy = 0. When the particle reaches its maximum x coordinate at ¢ = #,,, we must have
vy = 0. Therefore, 3.00 — 1.00¢,, = 0 or #,, = 3.00 s. The y component of the velocity at this
time is

v, =0-0.500(3.00) = —1.50 m/s;
this is the only nonzero component of v at 7,
(b) Since it started at the origin, the coordinates of the particle at any time # are given by

F=v,t++at’. Att=t, this becomes

- 2 1 A A 2 A
7= (3.001)(3.00) + E(—1.001 - 0.50_])(3.00)2 =(4.507 - 2.25]) m.
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18. We make use of Eq. 4-16.
(a) The acceleration as a function of time is

. av d 2 A ~
i= 7: = ((6.0r = 4.0*)i +8.0]) = (6.0-8.0)i

in SI units. Specifically, we find the acceleration vector at #=3.0s to be
(6.0-8.0(3.0))i=(~18 m/s*)i.
(b) The equation is @ = (6.0 —8.0¢)i =0; we find r=0.75 s.

(c) Since the y component of the velocity, v, = 8.0 m/s, is never zero, the velocity cannot
vanish.

(d) Since speed is the magnitude of the velocity, we have

v=|¥ :\/(6.Ot—4.0t2)2 +(8.0)° =10

in ST units (m/s). To solve for ¢, we first square both sides of the above equation, followed
by some rearrangement:

(6.00-4.07) +64 =100 = (6.0r-4.0¢) =36

Taking the square root of the new expression and making further simplification lead to
6.0t— 4.0t =16.0 = 4.0 -6.06+6.0=0

Finally, using the quadratic formula, we obtain

_ 6.0%/36-4(4.0)(6.0)

t 2(8.0)

where the requirement of a real positive result leads to the unique answer: t = 2.2 s.
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19. We make use of Eq. 4-16 and Eq. 4-10.

Using a = 3t§+4t3’, we have (in m/s)
B(t) =7, + [|a@ dr=(5.00i+2.00)) + I;(3ti+4tj) di=(5.00+3/2)1+(2.00+2¢)]

Integrating using Eq. 4-10 then yields (in metes)

F(t) =T + jo'vczzz(zo.oi+4o.oj)+ jo’[(s.oo+3z2/2)i+(2.00+2t2)j]dt

=(20.01+40.0])+(5.00¢ +£° /2)i +(2.00¢ + 2£/3);
=(20.0+5.00t+£ /2)i+(40.0+2.00¢ +2£*/3)]

(a) At 1=4.00 s, we have 7(t=4.005s)=(72.0 m)i+(90.7 m)].

(b) v(t=4.00s)=(29.0 m/ s)i+(34.0 m/ s)j. Thus, the angle between the direction of
travel and +x, measured counterclockwise, is @ =tan '[(34.0 m/s)/(29.0 m/s)]=49.5°.
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20. The acceleration is constant so that use of Table 2-1 (for both the x and y motions) is
permitted. Where units are not shown, SI units are to be understood. Collision between
particles 4 and B requires two things. First, the y motion of B must satisfy (using Eq. 2-15
and noting that €1is measured from the y axis)

1, 1 2 2
y—ant = 30 m—E[(OAOm/s )cosé’]t .
Second, the x motions of 4 and B must coincide:
vi=lar = (3.0 m/s)t =l[(o 40 m/s’) sin 6 | £*
5% . 5L )

We eliminate a factor of ¢ in the last relationship and formally solve for time:

v 2(3.0m/s)
a, (0.40m/s’)sin @’

This is then plugged into the previous equation to produce

S0m= % [(0.40 m/s’) cos 9] ( 2(3.0m/s) J

(0.40 m/s*) sin 6

which, with the use of sin® 8= 1 — cos” 6, simplifies to

30 = 9.0 _ cos 6; — 1—cos’ 8= 90 cos @
020 1- cos® (0.20)(30)

We use the quadratic formula (choosing the positive root) to solve for cos €:

—1.5+ /1.5 =4(1.0)(-1.0
o O J 2( )( ):%

which yields @ = cos™ (%) =60°.
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21. (a) From Eq. 4-22 (with &, = 0), the time of flight is

p= |22 [2E50M) 503
g V980 mss

(b) The horizontal distance traveled is given by Eq. 4-21:
Ax =v,t = (250 m/s)(3.03s) =758 m.
(c) And from Eq. 4-23, we find

‘v},‘ = g1 =(9.80 m/s?)(3.03s) = 29.7 my/s.
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22. We use Eq. 4-26

2 2 (9.50m/s)’
R =| Y sin 26, =V—°=¥= 9.209 m=9.21m
g g  9.80m/s

to compare with Powell’s long jump; the difference from Ry.x is only AR =(9.21m —
8.95m) = 0.259 m.
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23. Using Eq. (4-26), the take-off speed of the jumper is

b= gR  [(9.80 m/s*)(77.0 m) — 431 m/s
" \sin26, sin 2(12.0°) '
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24. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable.

(a) With the origin at the initial point (edge of table), the y coordinate of the ball is given
by y=—1gt?. If tis the time of flight and y = —1.20 m indicates the level at which the

ball hits the floor, then

2(~1.20 m)
t= |—~———=04095s.
~9.80 m/s’

A

(b) The initial (horizontal) velocity of the ball is v=v,1. Since x = 1.52 m is the
horizontal position of its impact point with the floor, we have x = vyz. Thus,

x 1.52m

V,=—= =3.07 m/s.
t 0495s
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25. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The initial velocity is horizontal so that v, =0 and

Vo, =V, =10 m/s.

(a) With the origin at the initial point (where the dart leaves the thrower’s hand), the y
coordinate of the dart is given by y=-1gt*, so that with y = —PQ we have

PO=1(9.8m/s*)(0.195) =0.18 m,

(b) From x = vyt we obtain x = (10 m/s)(0.19 s) = 1.9 m.
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26. (a) Using the same coordinate system assumed in Eq. 4-22, we solve for y = A:
: 1,
h=y,+v,sinG,t — Egt

which yields # = 51.8 m for yo =0, vo =42.0 m/s, & = 60.0° and # = 5.50 s.

(b) The horizontal motion is steady, so v, = vy, = vy cos &, but the vertical component of
velocity varies according to Eq. 4-23. Thus, the speed at impact is

v:\/(vocosb?o)2 + (v,5in6, — gt)’ =27.4 m/s.
(c) We use Eq. 4-24 with v,=0 and y = H:

. 2
o osin®o) _ oo
2g
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27. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below
the release point. We write & = —30.0° since the angle shown in the figure is measured
clockwise from horizontal. We note that the initial speed of the decoy is the plane’s speed
at the moment of release: vy = 290 km/h, which we convert to SI units: (290)(1000/3600)
= 80.6 m/s.

(a) We use Eq. 4-12 to solve for the time:

700 m

=10.0 s.
(80.6 m/s) cos (—30.0°)

Ax=(v,cos6,))t = t=

(b) And we use Eq. 4-22 to solve for the initial height yj:
y—y,=(v,sin6)) t—%gt2 = 0-y,=(-40.3 m/s)(10.0 s)—%(9.80 m/s”)(10.0s)’

which yields yp = 897 m.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

28. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The coordinate origin is throwing point (the stone’s
initial position). The x component of its initial velocity is given by v, =v,cosé, and the

y component is given by v, = v,siné,, where vo = 20 mys is the initial speed and 6 =

40.0° is the launch angle.
(a) Att=1.10s, its x coordinate is

x = vyt cos §, =(20.0 m/s)(1.10's) cos 40.0°=16.9 m

(b) Its y coordinate at that instant is
y=v,tsin 6, - %gﬂ = (20.0m/s)(1.10s) sin 40.0° - % (9.80m/s”)(1.10s)" =8.21m.

(c) At '=1.80 s, its x coordinate is x = (20.0 m/s)(1.80 s) cos 40.0° = 27.6 m.

(d) Its y coordinate at ¢' is

y=(20.0m/s)(1.80s)sin 40.0° — % (9.80m/s*) (1.80s%) = 7.26m.

(e) The stone hits the ground earlier than ¢ = 5.0 s. To find the time when it hits the
ground solve y = vt sin 8, — 1 gt> =0 for . We find

. 6, - 2(20.0m/s)

08 m/ s sin 40° =2.62 s.
g Sm/s

Its x coordinate on landing is

x =yt cos 6, =(20.0 m/s)(2.62 s) cos 40° =40.2 m.

(f) Assuming it stays where it lands, its vertical component at = 5.00 s is y = 0.
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29. The initial velocity has no vertical component — only an x component equal to +2.00
m/s. Also, yo =+10.0 m if the water surface is established as y = 0.

(a) x — xo = vyt readily yields x — xo = 1.60 m.

(b) Using y — y, = v, 1 —1gt”, we obtain y = 6.86 m when ¢ = 0.800 s and v,=0.

¢) Using the fact that y = 0 and y, = 10.0, the equation y — y, = v, f —+ gt leads to
(c) Using y Y q Y=Y =Vy, =38

t=4/2(10.0 m)/9.80 m/s’ =1.43 s.

During this time, the x-displacement of the diver is x — xp = (2.00 m/s)(1.43 s) = 2.86 m.
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30. (a) Since the y-component of the velocity of the stone at the top of its path is zero, its
speed is

v= Vv +v =v, =v,cos6, =(28.0 m/s)cos40.0°=21.4 m/s.

(b) Using the fact that v, =0 at the maximum height y, ., the amount of time it takes for

the stone to reach y,_  1is given by Eq. 4-23:

_ VpSin 6,

O=v, =vsinf,—gt =t .

Substituting the above expression into Eq. 4-22, we find the maximum height to be

vsing, | 1 [v,sing, 2_v§sin290
2% g 2¢

. 1 .
Yimax = (VO Slngo) t_Egtz =V Slnﬁo(

To find the time the stone descends to y =y /2, we solve the quadratic equation given
in Eq. 4-22:

y= %ymax :—vg Sj:; % _ (v, sin6,) t—%gt2 = t, = (21_\/52);0 sin b, :
Choosing ¢ =¢,_ (for descending), we have
v, =V, cos 8, =(28.0 m/s)cos40.0°=21.4 m/s
v, =vsing, — g 2 V2w sind, —ﬁvo sin @, = 2 (28.0 m/s)sin40.0° = —12.7 m/s

2g 2 2

Thus, the speed of the stone when y=y__ /2 is

v= 2+ =J21.4 /sy +(-12.7 m/s)’ =249 ms.

(c) The percentage difference is

249 m/s—21.4 m/s
21.4 m/s

=0.163=16.3%.
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31. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below
the release point. We write & = —37.0° for the angle measured from +x, since the angle
given in the problem is measured from the —y direction. We note that the initial speed of
the projectile is the plane’s speed at the moment of release.

(a) We use Eq. 4-22 to find vy:
Y=y, =(v,sinb,) r—% gt’ = 0-730 m=v,sin(—-37.0°)(5.00s) —%(9.80 m/s*)(5.00 s)?

which yields vy = 202 m/s.
(b) The horizontal distance traveled is x = votcos & = (202 m/s)(5.00 s)cos(—37.0°) = 806 m.
(c) The x component of the velocity (just before impact) is
vy = vocos & = (202 m/s)cos(—37.0°) = 161 m/s.
(d) The y component of the velocity (just before impact) is

vy = Vo sin @ — gt = (202 m/s) sin (~37.0°) — (9.80 m/s?)(5.00 s) = —171 mVs.
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32. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below
the point where the ball was hit by the racquet.

(a) We want to know how high the ball is above the court when it is at x = 12.0 m. First,
Eq. 4-21 tells us the time it is over the fence:

. X 12.0 m

= = =0.508s.
v, cos 6, (23.6 m/s)cos 0°

At this moment, the ball is at a height (above the court) of

y=y,+ (v,8in ) 1 - %gtz =1.10m

which implies it does indeed clear the 0.90 m high fence.
(b) At = 0.508 s, the center of the ball is (1.10 m — 0.90 m) = 0.20 m above the net.

(c) Repeating the computation in part (a) with 6 = —5.0° results in # = 0.510 s and
v =0.040 m, which clearly indicates that it cannot clear the net.

(d) In the situation discussed in part (c), the distance between the top of the net and the
center of the ball at #=0.510 s is 0.90 m — 0.040 m = 0.86 m.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

33. We first find the time it takes for the volleyball to hit the ground. Using Eq. 4-22, we
have

Y=y, =(v,siné,) t—%gz‘2 = 0-2.30 m=(-20.0 m/s)sin(18.0°)¢ —%(9.80 m/s*)t?
which gives £ =0.30s. Thus, the range of the volleyball is
R =(v,co0s6,)t=(20.0 m/s)cos18.0°(0.30s) =5.71 m

On the other hand, when the angle is changed to 8, =8.00°, using the same procedure as
shown above, we find

Y=y, =,sin @) t'—%gt'2 = 0-2.30 m=(-20.0 m/s) sin(8.00°)t'—%(9.80 m/s’ )t
which yields /" =0.46 s, and the range is
R’ =(v,co0s6,)t =(20.0 m/s)cos18.0°(0.46 s) =9.06 m

Thus, the ball travels an extra distance of

AR=R —-R=9.06 m—5.71m=3.35m
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34. Although we could use Eq. 4-26 to find where it lands, we choose instead to work
with Eq. 4-21 and Eq. 4-22 (for the soccer ball) since these will give information about
where and when and these are also considered more fundamental than Eq. 4-26. With Ay
=0, we have

_(19.5 m/s)sin45.0°

> =2.81s.
(9.80 m/s”)/2

. 1
Ay =(v,siné,) t—Egt2 = ¢

Then Eq. 4-21 yields Ax = (vo cos &)t = 38.7 m. Thus, using Eq. 4-8, the player must
have an average velocity of

. _AF (387 m) i-(55 m)i
M At 2.81s

=(-5.8 m/s) i

which means his average speed (assuming he ran in only one direction) is 5.8 m/s.
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35. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The coordinate origin is at its initial position (where it is
launched). At maximum height, we observe v, = 0 and denote v, = v (which is also equal
to vox). In this notation, we have v, = 5v. Next, we observe vy cos € = vox = v, so that we

arrive at an equation (where v # 0 cancels) which can be solved for &:

(5v)cos, =v = 6, =cos” (%j =78.5°.
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36. (a) Solving the quadratic equation Eq. 4-22:
Y=y, =(v,sin6)) t—%gt2 = 0-2.160 m=(15.00 m/s) sin(45.00°)t—%(9.800 m/s*)¢?

the total travel time of the shot in the air is found to be t=2.352s. Therefore, the
horizontal distance traveled is

R =(v,cos6,)t=(15.00 m/s)cos45.00°(2.352 s) =24.95 m.

(b) Using the procedure outlined in (a) but for , =42.00°, we have
Y=y, =(v,sin b)) t—% gt’ = 0-2.160 m = (15.00 m/s)sin(42.00°)¢ —%(9.800 m/s*)t>

and the total travel time is #=2.245s. This gives

R=(v,co0s6,)t=(15.00 m/s)cos42.00°(2.2455s) =25.02 m.
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37. We designate the given velocity v = (7.6 m/s)§+(6.1 m/s)j as v, — as opposed to the
velocity when it reaches the max height v, or the velocity when it returns to the ground
v, — and take v, as the launch velocity, as usual. The origin is at its launch point on the
ground.

(a) Different approaches are available, but since it will be useful (for the rest of the
problem) to first find the initial y velocity, that is how we will proceed. Using Eq. 2-16,
we have

vlzy =v02y —2gAy = (6.1 m/s)’= véy —2(9.8 m/s*)(9.1 m)

which yields vy, = 14.7 m/s. Knowing that v,, must equal 0, we use Eq. 2-16 again but
now with Ay = A for the maximum height:

v =, —2gh = 0=(14.7 m/s)* —2(9.8 m/s>)h
which yields 2= 11 m.

(b) Recalling the derivation of Eq. 4-26, but using vy, for vy sin & and vy, for vy cos 6,
we have

1
0=v0yt—5gt2, R=v,.t

which leads toR = 2V, / g. Noting that vo, = v, = 7.6 m/s, we plug in values and

obtain
R =2(7.6 m/s)(14.7 m/s)/(9.8 m/s*) = 23 m.

(c) Since v3, = v, = 7.6 m/s and v3, = — vo,, = —14.7 m/s, we have

vy= Vi, +v, =(7.6 m/s)’ +(=14.7 m/s)* =17 mis.

(d) The angle (measured from horizontal) for v, is one of these possibilities:

tan”™' (%ﬁj =-63° or 117°
.6m

where we settle on the first choice (—63°, which is equivalent to 297°) since the signs of
its components imply that it is in the fourth quadrant.
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38. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The coordinate origin is at the release point (the initial
position for the ball as it begins projectile motion in the sense of §4-5), and we let & be
the angle of throw (shown in the figure). Since the horizontal component of the velocity
of the ball is v, = vy cos 40.0°, the time it takes for the ball to hit the wall 1s

e 22.0m —1.15s.

v (25.0 m/s)cos40.0°

(a) The vertical distance is
) 1 )
Ay = (v, sin 490)t—5gt2 =(25.0 m/s)sin40.0°(1.15s) —%(9.80 m/s*)(1.15s)* =12.0 m.

(b) The horizontal component of the velocity when it strikes the wall does not change
from its initial value: v, = vy cos 40.0° = 19.2 m/s.

(c) The vertical component becomes (using Eq. 4-23)
v, =V, sin g, — gt =(25.0 m/s) sin40.0° — (9.80 m/s*)(1.15s)=4.80 m/s.

(d) Since v, > 0 when the ball hits the wall, it has not reached the highest point yet.
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39. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The coordinate origin is at the end of the rifle (the initial
point for the bullet as it begins projectile motion in the sense of § 4-5), and we let &) be
the firing angle. If the target is a distance d away, then its coordinates are x = d, y = 0.
The projectile motion equations lead to d=v,cosé, and 0=vtsing,—Ligt* .

Eliminating ¢ leads to 2v; sin@,cos6, —gd =0 . Using sin6, cosd, = Lsin(26,), we
obtain

2
v; sin (26,)=gd = sin(26’0)=g= (9.80 m/s )(452.7 m)
v, (460 m/s)

which yields sin(26,) =2.11x10~ and consequently & = 0.0606°. If the gun is aimed at a
point a distance ¢/ above the target, then tan 8, = //d so that

¢ =dtan 6, = (45.7 m)tan(0.0606°) = 0.0484 m =4.84 cm.
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40. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The initial velocity is horizontal so that v,, = 0 and

v, =V, =161 km/h . Converting to SI units, this is vo = 44.7 m/s.

(a) With the origin at the initial point (where the ball leaves the pitcher’s hand), the y
coordinate of the ball is given by y =—1g¢*, and the x coordinate is given by x = vot.

From the latter equation, we have a simple proportionality between horizontal distance
and time, which means the time to travel half the total distance is half the total time.
Specifically, if x = 18.3/2 m, then ¢ = (18.3/2 m)/(44.7 m/s) = 0.205 s.

(b) And the time to travel the next 18.3/2 m must also be 0.205 s. It can be useful to write
the horizontal equation as Ax = voA¢ in order that this result can be seen more clearly.

(c) From y=-1lgt® , we see that the ball has reached the height of
| —%(9.80 m/s’ ) (0.205 s)2 |=0.205 m at the moment the ball is halfway to the batter.

(d) The ball’s height when it reaches the batter is —%(9.80 m/sz)(O.409 s)2 =-0.820m,

which, when subtracted from the previous result, implies it has fallen another 0.615 m.
Since the value of y is not simply proportional to ¢z, we do not expect equal time-intervals
to correspond to equal height-changes; in a physical sense, this is due to the fact that the
initial y-velocity for the first half of the motion is not the same as the “initial” y-velocity
for the second half of the motion.
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41. Following the hint, we have the time-reversed problem with the ball thrown from the
ground, towards the right, at 60° measured counterclockwise from a rightward axis. We
see in this time-reversed situation that it is convenient to use the familiar coordinate
system with +x as rightward and with positive angles measured counterclockwise.

(a) The x-equation (with xp = 0 and x = 25.0 m) leads to
25.0 m = (v cos 60.0°)(1.50 s),

so that vop = 33.3 m/s. And with yo = 0, and y = h > 0 at t = 1.50 s, we have
Y=Yy =Vo,t —%gt2 where vg, = vg sin 60.0°. This leads to 7 =32.3 m.

(b) We have
vy = vor = (33.3 m/s)cos 60.0° = 16.7 m/s
Vv, = vo, — gt = (33.3 m/s)sin 60.0° — (9.80 m/sz)(l.SO s)=14.2 m/s.

The magnitude of v is given by

|7 j= v +v2 =/(16.7 m/s)* +(14.2m/s)* =21.9 m/s.

6 =tan™ 143 =tan"' M =40.4°.
v, 16.7m/s

(d) We interpret this result (“undoing” the time reversal) as an initial velocity (from the
edge of the building) of magnitude 21.9 m/s with angle (down from leftward) of 40.4°.

(c) The angle is
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42. In this projectile motion problem, we have vy = vy = constant, and what is plotted is
V=V + vi. We infer from the plot that at # = 2.5 s, the ball reaches its maximum height,
where v, = 0. Therefore, we infer from the graph that v, = 19 m/s.

(a) During ¢ = 5 s, the horizontal motion is x — xp = v, = 95 m.

(b) Since \/(19 m/s)’ + v,, =31 m/s (the first point on the graph), we find v,, =24.5 m/s.
Thus, with £ = 2.5 s, we can use y,,, =, =V, f—3gt’ or v; =0 =v;? = 2g(y,,, —,), or

Viax — Vo = %(vy +v, )t to solve. Here we will use the latter:

1 1
Viax — Yo ZE(Vy +v0y) =y .= 5(0+ 24.5m/s)(2.5s)=31m

where we have taken y, = 0 as the ground level.
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43.(a) Letm = %: 0.600 be the slope of the ramp, so y = mx there. We choose our

coordinate origin at the point of launch and use Eq. 4-25. Thus,

(9.80 m/s*)x’

=tan(50.0°)x —
Y= tan0.000x = ) /) (cos 50.0°)

=0.600x

which yields x =4.99 m. This is less than d, so the ball does land on the ramp.

(b) Using the value of x found in part (a), we obtain y = mx =2.99 m. Thus, the
Pythagorean theorem yields a displacement magnitude of \/x* + > =5.82 m.

(¢) The angle is, of course, the angle of the ramp: tan™'(m) = 31.0°.
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44. (a) Using the fact that the person (as the projectile) reaches the maximum height over
the middle wheel located at x =23 m+(23/2) m=34.5 m, we can deduce the initial

launch speed from Eq. 4-26:

25in2 . *)(34.
yoR_wsin26, o | 28 208ms)GASm) _o6s
2 2g sin 26, sin(2-53°)

Upon substituting the value to Eq. 4-25, we obtain

(9.8 m/s*)(23 m)

=233 m.
2(26.5 m/s)*(cos 53°)°

2
y=Y,+xtan 6, —ino m+ (23 m)tan 53°—

2 2
2v; cos” 6,

Since the height of the wheel is 4, =18 m, the clearance over the first wheel is
Ay=y—h,=233m-18m=53m.

(b) The height of the person when he is directly above the second wheel can be found by
solving Eq. 4-24. With the second wheel located at x=23 m+(23/2) m=34.5m, we

have
(9.8 m/s*)(34.5 m)*
2(26.52 m/s)*(cos 53°)°

2
y=y,+xtan 6, & -390 m+(34.5 m)tan 53°—

2 2
2v; cos” 6,

=259 m.
Therefore, the clearance over the second wheelis Ay=y—h =259 m-18m=7.9 m.
(c) The location of the center of the net is given by

ax’ . v, sin26,  (26.52 m/s)’sin(2-53°)

—— = 3 =69 m.
2v; cos” 6, g 9.8 m/s

O=y-y,=xtan g, -

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

45. Using the information given, the position of the insect is given by (with the Archer
fish at the origin)

x=dcos¢=(0.900 m)cos36.0°=0.728 m
y=dsing=(0.900 m)sin36.0°=0.529 m

Since y corresponds to the maximum height of the parabolic trajectory (see Problem 4-
30): y=y,, =Vv;sin’§,/2g, the launch angle is found to be

2
6, =sin| |22 |=gint| [ZOBWENOI29m) |Gt 9044) = 64.8°
vy (3.56 m/s)
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46. Following the hint, we have the time-reversed problem with the ball thrown from the
roof, towards the left, at 60° measured clockwise from a leftward axis. We see in this
time-reversed situation that it is convenient to take +x as lefiward with positive angles
measured clockwise. Lengths are in meters and time is in seconds.

(a) With yo = 20.0 m, and y = 0 at 7 = 4.00 s, we have y—y, =v, t—+gt’ where
Vo, =V, sin60°. This leads to vo = 16.9 m/s. This plugs into the x-equation x—x, =v,
(with xo = 0 and x = d) to produce d = (16.9 m/s)cos 60°(4.00 s) = 33.7 m.

(b)We have

v, =v,, =(16.9 m/s)cos 60.0° = 8.43 m/s
v, =V, — gt =(16.9 m/s)sin 60.0°— (9.80m/s*)(4.00 s) = —24.6 m/s.

The magnitude of ¥ is |V |= \/v2 +v? =+/(8.43 m/s)’ +(~24.6 m/s)* =26.0 m/s.

(c) The angle relative to horizontal is

f=tan”' el =tan"' —24.6m/s =—71.1°.
% 8.43m/s

X

We may convert the result from rectangular components to magnitude-angle
representation:
v =(8.43,-24.6) > (26.0 £—-171.1°)

and we now interpret our result (“undoing” the time reversal) as an initial velocity of
magnitude 26.0 m/s with angle (up from rightward) of 71.1°.
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47. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below
impact point between bat and ball. The Hint given in the problem is important, since it
provides us with enough information to find vy directly from Eq. 4-26.

(a) We want to know how high the ball is from the ground when it is at x = 97.5 m, which

requires knowing the initial velocity. Using the range information and & = 45°, we use
Eq. 4-26 to solve for vy:

9.8 m/s* )(107 m
v, = |28 =\/( JOTm) _ 2 g
sin 26, 1

Thus, Eq. 4-21 tells us the time it is over the fence:

X 97.5m
t_

= = =4.26s.
v, cos 6, (32.4m/s)cos 45°

At this moment, the ball is at a height (above the ground) of
. 1,
y=y,+ (v, sin 6,)r — Egt =988 m

which implies it does indeed clear the 7.32 m high fence.

(b) At t=4.26 s, the center of the ball is 9.88 m — 7.32 m = 2.56 m above the fence.
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48. Using the fact that v, =0 when the player is at the maximum height y,_ , the amount
of time it takes to reach y_, can be solved by using Eq. 4-23:

v, sin 6,

O=v,=v,sing,—gt = ¢, = 2

Substituting the above expression into Eq. 4-22, we find the maximum height to be

2

. 1 .
Viax = (Vo SING)) 1, —Egl‘max v, sin 6, [

vsing, | 1 [v,sing, z_vozsinzé?o
2% ¢ 2¢

To find the time when the playeris at y =y _ /2, we solve the quadratic equation given
in Eq. 4-22:
1 _ v sin’ 6,

V=7 Vimax =

. 242 i
5 =(vosm00)t—lgt2 = tiz( \/—)vosmeo.

4g 2 2g

With ¢t =t (for ascending), the amount of time the player spends at a height y>y /2
is
A=t g = sing, (2—\/5)120 sin 6, _ Y sin 6, _ L - £:L:0.707.

"Tg 2g V2g 2 ENG)

Therefore, the player spends about 70.7% of the time in the upper half of the jump. Note
that the ratio At/¢_, is independent of v, and 6, even though Az and ¢, depend on

these quantities.

X
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49. (a) The skier jumps up at an angle of 6§, =9.0° up from the horizontal and thus

returns to the launch level with his velocity vector 9.0° below the horizontal. With the
snow surface making an angle of o =11.3° (downward) with the horizontal, the angle
between the slope and the velocity vectoris g =a—6, =11.3°-9.0°=2.3°.

(b) Suppose the skier lands at a distance d down the slope. Using Eq. 4-25 with
x=dcosa and y =-dsina (the edge of the track being the origin), we have

2
g, - g(dcosa)

—dsino =d cos & tan —
2v, cos” 6,

Solving for d, we obtain

2v: cos’ 6 . 2v: cos 6, . .
d =———(cos o tan §, +sin o) = ———"(cos & sin 6, +cos g, sinx)
gcos’ o gcos’ o
2v2cosé, .
=———"Lsin(6, + ).
gcos’ o

Substituting the values given, we find

J= 2(10 m/s)* cos(9.0°)
(9.8 m/s*)cos*(11.3°)

sin(9.0°4+11.3°)=7.27 m.
which gives

y=—dsina=—(7.27 m)sin(11.3°) =-1.42 m.
Therefore, at landing the skier is approximately 1.4 m below the launch level.

(c) The time it takes for the skier to land is

N dcosor  (7.27 m)cos(11.3°)
v. v,cos6, (10m/s)cos(9.0°)

X

0.72s.

Using Eq. 4-23, the x-and y-components of the velocity at landing are

v, =v,c086, =(10m/s)cos(9.0°)=9.9 m/s
v, =v,sinf, — gt =(10m/s)sin(9.0°)—(9.8 m/s*)(0.72s)=-5.5m/s

Thus, the direction of travel at landing is

6=tan"' 43 =tan”’ Lm/s =-29.1°.
v, 9.9m/s

or 29.1° below the horizontal. The result implies that the angle between the skier’s path
and the slope is ¢=29.1°-11.3°=17.8°, or approximately 18° to two significant figures.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

50. From Eq. 4-21, we find ¢t = x/v,,. Then Eq. 4-23 leads to

gx
v, =V, 8=V, — .

Y
O0x

Since the slope of the graph is —0.500, we conclude ;}g_ =% = Vox = 19.6 m/s. And from

the *“y intercept” of the graph, we find v,y = 5.00 m/s. Consequently, &, = tan_l(voy/ Vox) =
14.3°.
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51. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The coordinate origin is at the point where the ball is
kicked. We use x and y to denote the coordinates of ball at the goalpost, and try to find
the kicking angle(s) & so that y = 3.44 m when x = 50 m. Writing the kinematic
equations for projectile motion:

— - : L op?
x=v,c086,, y=vitsin ,— 5gt",

we see the first equation gives ¢ = x/vy cos €, and when this is substituted into the second
the result is

2
gax
=xtan§, - ——=———.
4 * 2v2 cos’ B,
One may solve this by trial and error: systematically trying values of € until you find the
two that satisfy the equation. A little manipulation, however, will give an algebraic
solution: Using the trigonometric identity 1/ cos* 6 = 1 + tan® &, we obtain

1 gx’ 1 gx’
& tan? Ho—xtan6’0+y+5g)§ =0

2
Vo Vo

which is a second-order equation for tan &). To simplify writing the solution, we denote

c=Lgx’ /vy = £(9.80 m/s’)(50 m)’ /(25 m/s)” =19.6m.

Then the second-order equation becomes ¢ tan® & — x tan & + y + ¢ = 0. Using the
quadratic formula, we obtain its solution(s).

xE\x*=4(y+c)e 50 mE (50 m) —4(3.44 m+19.6 m)(19.6 m)
2¢ - 2(19.6 m) '

tan 6, =
The two solutions are given by tan & = 1.95 and tan & = 0.605. The corresponding (first-
quadrant) angles are &) = 63° and @, = 31°. Thus,
(a) The smallest elevation angle is & = 31°, and
(b) The greatest elevation angle is 6, = 63°.

If kicked at any angle between these two, the ball will travel above the cross bar on the
goalposts.
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52. For Ay = 0, Eq. 4-22 leads to ¢ = 2v,sinf,/g, which immediately implies tn.x = 2vo/g
(which occurs for the “straight up” case: 6, = 90°). Thus,

T lnax = Volg = 3 = sin6,.
Therefore, the half-maximum-time flight is at angle €, = 30.0°. Since the least speed
occurs at the top of the trajectory, which is where the velocity is simply the x-component
of the initial velocity (vo,cosé, = v,c0s30° for the half-maximum-time flight), then we
need to refer to the graph in order to find v, — in order that we may complete the solution.
In the graph, we note that the range is 240 m when 6, = 45.0°. Eq. 4-26 then leads to v, =
48.5 m/s. The answer is thus (48.5 m/s)c0s30.0° =42.0 m/s.
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53. We denote 4 as the height of a step and w as the width. To hit step n, the ball must fall
a distance nh and travel horizontally a distance between (n — 1)w and nw. We take the
origin of a coordinate system to be at the point where the ball leaves the top of the
stairway, and we choose the y axis to be positive in the upward direction. The coordinates

of the ball at time ¢ are given by x = vo, and y = —1 g* (since vy, = 0). We equate y to
—nh and solve for the time to reach the level of step n:

2nh
t= |22
g
The x coordinate then is
2nh 2n(0.203 m)
x=v, [— =(1.52 m/s),| ——————= =(0.309 m) +/n.
o \/ g ( )V 9.8 m/s’ ( )

The method is to try values of # until we find one for which x/w is less than n but greater
than n — 1. For n = 1, x = 0.309 m and x/w = 1.52, which is greater than n. Forn =2, x =
0.437 m and x/w = 2.15, which is also greater than n. For n = 3, x = 0.535 m and x/w =
2.64. Now, this is less than n and greater than n — 1, so the ball hits the third step.
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54. We apply Eq. 4-21, Eq. 4-22 and Eq. 4-23.

(a) From Ax=v, ¢, we find v, =40 m/2s =20 m/s.

(b) From Ay =v, 1 —1gt’, wefind v, = (53 m+1(9.8 m/s?)(2 s)z)/2 =36m/s.

(c) From v, =v, —gt’ with v, = 0 as the condition for maximum height, we obtain

t'=(36 m/s) /(9.8 m/s*)=3.7s. During that time the x-motion is constant, so
x'—x, =(20 m/s)(3.7s) =74 m.
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55. Let yo= ho= 1.00 m at xo = 0 when the ball is hit. Let y; = & (the height of the wall)
and x; describe the point where it first rises above the wall one second after being hit;
similarly, y, = & and x, describe the point where it passes back down behind the wall four
seconds later. And y,= 1.00 m at x,= R is where it is caught. Lengths are in meters and
time is in seconds.

(a) Keeping in mind that v, is constant, we have x, — x; = 50.0 m = vy, (4.00 s), which
leads to vi, = 12.5 m/s. Thus, applied to the full six seconds of motion:

Xr—Xxo=R=v(6.00s)=75.0 m.
(b) We apply y —y, =v,,t -7 gt® to the motion above the wall,
¥, =1, =0=v, (4.00s) - %g(4.00 s)’

and obtain v;, = 19.6 m/s. One second earlier, using v, = vo, — g(1.00 s), we find
v, =29.4 m/s . Therefore, the velocity of the ball just after being hit is

¥ =v,i+v,,]=(12.5m/s) i+ (29.4 m/s) ]

Its magnitude is |V |= \/(12.5 m/s)’+(29.4m/s)* =31.9 m/s.

v
f=tan'| = [=tan™" 29.4m/s =67.0°.
% 12.5m/s

X

(c) The angle is

We interpret this result as a velocity of magnitude 31.9 m/s, with angle (up from
rightward) of 67.0°.

(d) During the first 1.00 s of motion, y =y, +v, - Lgt’ yields

h=1.0m+(29.4m/s)(1.00s) - £(9.8 m/s*)(1.00s)" =25.5m.
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56. (a) During constant-speed circular motion, the velocity vector is perpendicular to the

. . - -
acceleration vector at every instant. Thus, v - a =0.

(b) The acceleration in this vector, at every instant, points towards the center of the circle,
whereas the position vector points from the center of the circle to the object in motion.

Thus, the angle between ¥ and a is 180° at every instant, so rxa=0.
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57. (a) Since the wheel completes 5 turns each minute, its period is one-fifth of a minute,
or12s.

(b) The magnitude of the centripetal acceleration is given by a = v*/R, where R is the
radius of the wheel, and v is the speed of the passenger. Since the passenger goes a
distance 27zR for each revolution, his speed is

27(15
y = 2ZUSM) s
12s
. , .. (785m/s) ,
and his centripetal acceleration is a = Thm =41m/s".
m

(c) When the passenger is at the highest point, his centripetal acceleration is downward,
toward the center of the orbit.

(d) At the lowest point, the centripetal acceleration isa =4.1 m/s”, same as part (b).

(e) The direction is up, toward the center of the orbit.
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58. The magnitude of the acceleration is

2 (10m/s)’
gy _Qomisy o e
r 25m
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59. We apply Eq. 4-35 to solve for speed v and Eq. 4-34 to find centripetal acceleration a.
(@) v=2m/T =220 km)/1.0 s = 126 km/s = 1.3 x 10° m/s.

(b) The magnitude of the acceleration is

2 (126 km/s)
g _(26km/s) o s e
r 20 km

(c) Clearly, both v and a will increase if T is reduced.
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60. We apply Eq. 4-35 to solve for speed v and Eq. 4-34 to find acceleration a.
(a) Since the radius of Earth is 6.37 x 10° m, the radius of the satellite orbit is
r=(6.37x10° + 640 x 10’ ) m = 7.01 x 10° m.

Therefore, the speed of the satellite is

272(7.01x10°
L2 A e m? =749%10° m/s.
T (98.0 min)(60 s/ min)

(b) The magnitude of the acceleration is

2
2 (749%10°m/s
a:V_:( - )=8.00m/s2.
r 7.01x10° m
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61. The magnitude of centripetal acceleration (¢ = v*/r) and its direction (towards the
center of the circle) form the basis of this problem.

(a) If a passenger at this location experiences d@ =183 m/s” east, then the center of the
circle is east of this location. The distance is 7 = v¥/a = (3.66 m/s)*/(1.83 m/s*) = 7.32 m.

(b) Thus, relative to the center, the passenger at that moment is located 7.32 m toward the
west.

(c) If the direction of a experienced by the passenger is now south—indicating that the

center of the merry-go-round is south of him, then relative to the center, the passenger at
that moment is located 7.32 m toward the north.
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62. (a) The circumference is ¢ =2z =2(0.15 m) = 0.94 m.

(b) With T'= (60 s)/1200 = 0.050 s, the speed is v = ¢/T = (0.94 m)/(0.050 s) = 19 m/s.
This is equivalent to using Eq. 4-35.

(¢) The magnitude of the acceleration is a = v*/r = (19 m/s)*/(0.15 m) = 2.4 x 10° m/s”.

(d) The period of revolution is (1200 rev/min)" = 8.3 x 10~ min which becomes, in SI
units, 7= 0.050 s = 50 ms.
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63. Since the period of a uniform circular motion is 7 =27zr /v, where r is the radius and
v is the speed, the centripetal acceleration can be written as

T

v 1 2xzr 2_47r2r
T

Based on this expression, we compare the (magnitudes) of the wallet and purse
accelerations, and find their ratio is the ratio of » values. Therefore, awaiet = 1.50 @purse -
Thus, the wallet acceleration vector is

a=1.50[(2.00 m/s*)i +(4.00 m/s*)j]=(3.00 m/s*)i +(6.00 m/s>)].
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64. The fact that the velocity is in the +y direction, and the acceleration is in the +x
direction at ;= 4.00 s implies that the motion is clockwise. The position corresponds to
the “9:00 position.” On the other hand, the position at £,=10.0 s is in the “6:00 position”
since the velocity points in the -x direction and the acceleration is in the +y direction. The
time interval Ar=10.0s—-4.00s=6.00 s is equal to 3/4 of a period:

6.00 s=%T = T=8.00s.
Eq. 4-35 then yields

r_ﬂ_ (3.00m/s)(8.005s)
27 27

=3.82 m.

(a) The x coordinate of the center of the circular pathis x=5.00 m+3.82 m=8.82 m.

(b) The y coordinate of the center of the circular path is y =6.00 m.

In other words, the center of the circle is at (x,y) = (8.82 m, 6.00 m).
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65. We first note that a, (the acceleration at #; = 2.00 s) is perpendicular to a (the
acceleration at £,=5.00 s), by taking their scalar (dot) product.:

G,-d, =[(6.00 m/s*)i+(4.00 m/s?)j]-[(4.00 m/s*)i+(—6.00 m/s>)j]=0.

Since the acceleration vectors are in the (negative) radial directions, then the two
positions (at #, and t,) are a quarter-circle apart (or three-quarters of a circle, depending
on whether one measures clockwise or counterclockwise). A quick sketch leads to the
conclusion that if the particle is moving counterclockwise (as the problem states) then it
travels three-quarters of a circumference in moving from the position at time ¢, to the
position at time #, . Letting 7 stand for the period, then £, — # =3.00 s = 37/4. This gives
T=4.00 s. The magnitude of the acceleration is

a=\a}+a’ =/(6.00m/s*) +(4.00 m/s)’ =7.21 m/s’.

Using Eq. 4-34 and 4-35, we have a = 4x°r/T?, which yields

aT? (7.21 m/s*)(4.00 s)’

2 2

=2.92 m.

=

4 47
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66. When traveling in circular motion with constant speed, the instantaneous acceleration
vector necessarily points towards the center. Thus, the center is “straight up” from the
cited point.

(a) Since the center is “straight up” from (4.00 m, 4.00 m), the x coordinate of the center
is 4.00 m.

(b) To find out “how far up” we need to know the radius. Using Eq. 4-34 we find

2 (5.00 m/s)’
p = BO0MS) s o m,
a 125 m/s

Thus, the y coordinate of the center is 2.00 m + 4.00 m = 6.00 m. Thus, the center may
be written as (x, y) = (4.00 m, 6.00 m).
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67. To calculate the centripetal acceleration of the stone, we need to know its speed
during its circular motion (this is also its initial speed when it flies off). We use the
kinematic equations of projectile motion (discussed in §4-6) to find that speed. Taking
the +y direction to be upward and placing the origin at the point where the stone leaves its
circular orbit, then the coordinates of the stone during its motion as a projectile are given

by x = vt and y = -1 gt (since vy, = 0). It hits the ground at x = 10 m and y = -2.0 m.
Formally solving the second equation for the time, we obtain ¢ =,/—2y /g, which we

substitute into the first equation:

2
Vo =X —iz(lom) —M:157 m/s.
2y 2(-2.0 m)

Therefore, the magnitude of the centripetal acceleration is

2 (157 m/s)
gV (sTmls) e
r 15m
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68. We note that after three seconds have elapsed (#, — ¢, = 3.00 s) the velocity (for this
object in circular motion of period 7") is reversed; we infer that it takes three seconds to
reach the opposite side of the circle. Thus, 7=2(3.00 s) = 6.00 s.

(a) Using Eq. 4-35, r = vT/2m, where v=1/(3.00 m/s)’ +(4.00 m/s)> =5.00 m/s , we obtain

r=4.77 m. The magnitude of the object’s centripetal acceleration is therefore a = v*/r =
5.24 m/s’,

(b) The average acceleration is given by Eq. 4-15:

. P,—¥ (=3.00i—4.007) m/s—(3.00i+4.007) m/s
W= J ]

= (=2.00 m/s?)i+(—2.67 m/s*)]
v, 5.00s—2.00s ( i+ )]

which implies | d@,,, |=+/(~=2.00 m/s?)? +(=2.67 m/s*)* =3.33 m/s’.

avg
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69. We use Eq. 4-15 first using velocities relative to the truck (subscript t) and then using
velocities relative to the ground (subscript g). We work with SI wunits, so
20km/h—5.6m/s, 30km/h 583 m/s, and 45km/h—12.5 m/s. We choose

east as the + 1 direction.

(a) The velocity of the cheetah (subscript ¢) at the end of the 2.0 s interval is (from Eq.
4-44)

¥, =V, ~7, =(12.5m/s) i—(-5.6 m/s) i=(18.1 m/s) i
relative to the truck. Since the velocity of the cheetah relative to the truck at the
beginning of the 2.0 s interval is (—8.3 m/sﬁ , the (average) acceleration vector relative to
the cameraman (in the truck) is

a _(18.1m/s)i — (8.3 m/s)i

=(13 m/s?)i,
e 2.0s ( )

or |d_. |=13 m/s’.

avg
(b) The direction of @, is +1, or eastward.

(c) The velocity of the cheetah at the start of the 2.0 s interval is (from Eq. 4-44)
Vg = Voo Vo = (8.3 m/8)i + (5.6 m/s)i = (~13.9 m/s)i

relative to the ground. The (average) acceleration vector relative to the crew member (on
the ground) is
_ o (12.5m/s)i— (<13, i -
i, = ( rn/s)12 0( DI _ (13 mis?, G, =13 m/s?
0Os

identical to the result of part (a).
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70. We use Eq. 4-44, noting that the upstream corresponds to the +1 direction.
(a) The subscript b is for the boat, w is for the water, and g is for the ground.
Vog =V +7,, = (14 km/h) i+ (=9 knv/h) i = (5 kmv/h) i,
Thus, the magnitude is |v,, [=5 km/h.
(b) The direction of v, , is +x, or upstream.
(c) We use the subscript ¢ for the child, and obtain
V., =V, +¥,, =(~6km/h) i+(5km/h)i=(-1km/h)i.

The magnitude is | v, [=1 km/h.

(d) The direction of v, is —x, or downstream.
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71. While moving in the same direction as the sidewalk’s motion (covering a distance d
relative to the ground in time ¢, = 2.50 s), Eq. 4-44 leads to

d
Vsidewalk T Vman running = 71
While he runs back (taking time #,= 10.0 s) we have
d
Vsidewalk — Vman running = — tH e

.y . . . . 125 _ 5 _
Dividing these equations and solving for the desired ratio, we get — 5 = 5 = 1.67.
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72. We denote the velocity of the player with v, and

the relative velocity between the player and the ball be ..
Vg - Then the velocity v, of the ball relative to the Vgr

field is given by v,,. =V,. +V,,. The smallest angle

Gnin corresponds to the case when v, 1 v,.. Hence,

gmin :1800_(305_1 |‘i";F| :1800_005—1 (40 m/s
Vap 6.0 m/s
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73. The velocity vectors (relative to the shore) for ships 4 and B are given by

v, =—(v,cos45°) f+(vA sin45°)j

¥, =— (v, sin40°) i —(v, cos40°) ],
with v = 24 knots and v = 28 knots. We take east as + 1 and north as 3 .
(a) Their relative velocity is

V=V, —V, = (v,8in40°—v,cos45°) i+ (v, cos40°+v, sin45°) ]

the magnitude of whichis |V, ; |= \/(1.03 knots)® +(38.4 knots)’ = 38 knots.
(b) The angle &which v, , makes with north is given by
6 =tan"'| 425 | = tan”! (Mj =1.5°
Vs 38.4 knots
which is to say that v, , points 1.5° east of north.

(c) Since they started at the same time, their relative velocity describes at what rate the
distance between them is increasing. Because the rate is steady, we have

19, 384

(d) The velocity v, , does not change with time in this problem, and 7, , is in the same
direction as v, , since they started at the same time. Reversing the points of view, we
have v, , =—-v,, so that ¥, , =—7, , (i.e., they are 180° opposite to each other). Hence,

we conclude that B stays at a bearing of 1.5° west of south relative to 4 during the
journey (neglecting the curvature of Earth).
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— A
74. The destination is D = 800 km j where we orient axes so that +y points north and +x
points east. This takes two hours, so the (constant) velocity of the plane (relative to the

ground) is \7;g = (400 km/h)j . This must be the vector sum of the plane’s velocity with
respect to the air which has (x,y) components (500cos70°, 500sin70°) and the velocity of

the air (wind) relative to the ground \Zg . Thus,
(400 km/h)j = (500 km/h) cos70° i+ (500 km/h) sin70°j + \Zg

which yields
Vag =(—171 km/h)i —( 70.0 km/h)j .

(a) The magnitude of v,, is [V,, |= \/(—171 km/h)*+(=70.0 km/h)* =185 km/h.
(b) The direction of v,, is

9—tanl(_70'0 km/h

=22.3° (south of west).
—171 km/h
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75. Relative to the car the velocity of the snowflakes has a vertical component of 8.0 m/s
and a horizontal component of 50 km/h = 13.9 m/s. The angle @ from the vertical is found
from

ang=r-139ms _, o,

v 8.0 m/s

v

which yields €= 60°.
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76. Velocities are taken to be constant; thus, the velocity of the plane relative to the
ground is v, = (55 km)/(1/4 hour) j= (220 km/h)j. In addition,

¥, = (42 km/h)(c0s20°1 —sin20°j) = (39 km/h)i—(14 km/h);.
Using v, =V,,+V,;, we have
¥y = Vg =V, =—(39 km/h)i+(234 km/h)j.

which implies | v,, =237 km/h, or 240 km/h (to two significant figures.)
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77. Since the raindrops fall vertically relative to the train, the horizontal component of the
velocity of a raindrop is v; = 30 m/s, the same as the speed of the train. If v, is the vertical
component of the velocity and & is the angle between the direction of motion and the

vertical, then tan 8= v;/v,. Thus v, = vy/tan €= (30 m/s)/tan 70° = 10.9 m/s. The speed of
a raindrop is

v=yv2+12 =430 m/s)> +(109 m/s)> =32 m/s.
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78. This is a classic problem involving two-dimensional relative motion. We align our
coordinates so that east corresponds to +x and north corresponds to +y. We write the
vector addition equation as V. =V, +V,;. We have v, =(2.0£0°) in the magnitude-

angle notation (with the unit m/s understood), or v, = 2.0i in unit-vector notation. We
also have v,, =(8.0£120°) where we have been careful to phrase the angle in the

‘standard’ way (measured counterclockwise from the +x axis), or v, = (—4.0i+6.9j) m/s.
(a) We can solve the vector addition equation for v,:

Vo = Vg + Vs =(2.0m/s)i+(—4.0i+6.9]) m/s = (=2.0 m/s)i+(6.9 m/s)].
Thus, we find [v,.|=7.2 m/s.

(b) The direction of ¥,, is @=tan'[(6.9m/s)/(-=2.0m/s)]=106° (measured
counterclockwise from the +x axis), or 16° west of north.

(c) The velocity is constant, and we apply y — yo = v, in a reference frame. Thus, in the
ground reference frame, we have (200 m) = (7.2 m/s)sin(106°)t — ¢ =29 s. Note: if a

student obtains “28 s”, then the student has probably neglected to take the y component
properly (a common mistake).
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79. We denote the police and the motorist with subscripts p and m, respectively. The
coordinate system is indicated in Fig. 4-49.

(a) The velocity of the motorist with respect to the police car is

¥, , =9, -, =(-60 km/h)j—(~80 km/h)i = (80 km/h)i—(60 km/h)].

m p

(b) v,,, does happen to be along the line of sight. Referring to Fig. 4-49, we find the

vector pointing from one car to another is 7 = (800 m)f —(600 m)j (from M to P). Since

the ratio of components in 7 is the same as in v, they must point the same direction.

mp

(c) No, they remain unchanged.
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80. We make use of Eq. 4-44 and Eq. 4-45.

The velocity of Jeep P relative to A at the instant is

¥, = (40.0 m/s)(cos 60°1 +sin 60°]) = (20.0 m/s)i + (34.6 m/s)].
Similarly, the velocity of Jeep B relative to 4 at the instant is

¥, = (20.0 m/s)(cos 301 +sin 30°]) = (17.3 m/s)i + (10.0 m/s)].
Thus, the velocity of P relative to B is

Vg =V, — Vg, = (20.01+34.6)) m/s—(17.31+10.0) m/s = (2.68 m/s)i +(24.6 m/s);].

(a) The magnitude of ¥, is | V,, |= \/(2.68 m/s)” +(24.6 m/s)’ =24.8 m/s.

(b) The direction of v,, is @ =tan"'[(24.6 m/s)/(2.68 m/s)] = 83.8° north of east (or 6.2°
east of north).

(c) The acceleration of P is
d,, = (0.400 m/s?)(cos 60.0°1 +sin 60.0°j) = (0.200 m/s>)i +(0.346 m/s?)],
and d,, =d,, . Thus, we have | d,, |=0.400 m/s’.

(d) The direction is 60.0° north of east (or 30.0° east of north).
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81. Here, the subscript W refers to the water. Our coordinates are chosen with +x being
east and +y being north. In these terms, the angle specifying east would be 0° and the
angle specifying south would be —90° or 270°. Where the length unit is not displayed, km
is to be understood.

(a) Wehave v, , =v,, +V,,, so that
V,p =(22 £ -90°)— (40 £ 37°)=(56 £ —125°)

in the magnitude-angle notation (conveniently done with a vector-capable calculator in
polar mode). Converting to rectangular components, we obtain

v, , = (=32km/h) i — (46 km/h) ] .
Of course, this could have been done in unit-vector notation from the outset.

(b) Since the velocity-components are constant, integrating them to obtain the position is
straightforward (7 —7, = | v df)

F=(2.5-32) 1 +(4.0-461)]

with lengths in kilometers and time in hours.

(c) The magnitude of this 7 is r=+/(2.5—32)> +(4.0—46t)> . We minimize this by
taking a derivative and requiring it to equal zero — which leaves us with an equation for ¢

dr 1 6286t — 528 o
dt 2 \)(25-321) +(4.0—-461)*

which yields # = 0.084 h.

(d) Plugging this value of ¢ back into the expression for the distance between the ships (7),
we obtain 7 = 0.2 km. Of course, the calculator offers more digits (» = 0.225...), but they
are not significant; in fact, the uncertainties implicit in the given data, here, should make
the ship captains worry.
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b

82. We construct a right triangle starting from the clearing on the
south bank, drawing a line (200 m long) due north (upward in our
sketch) across the river, and then a line due west (upstream, leftward
in our sketch) along the north bank for a distance (82 m)+ (1.1 m/s)¢,

where the 7-dependent contribution is the distance that the river will
carry the boat downstream during time ¢. ¢

The hypotenuse of this right triangle (the arrow in our sketch) also south

depends on ¢ and on the boat’s speed (relative to the water), and we set it equal to the
Pythagorean “sum” of the triangle’s sides:

(4.0)¢ = 2007 + (82 + L1¢)’
which leads to a quadratic equation for ¢
46724 +180.4¢ — 14.8¢> = 0.

We solve this and find a positive value: t = 62.6 s.

The angle between the northward (200 m) leg of the triangle and the hypotenuse (which
is measured “west of north”) is then given by

6 =tan" (82 al th] =tan”' (ﬂ) =37°
200 200 '
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83. Using displacement = velocity x time (for each constant-velocity part of the trip),
along with the fact that 1 hour = 60 minutes, we have the following vector addition
exercise (using notation appropriate to many vector capable calculators):

(1667 m £ 0% + (1333 m £ —90°) + (333 m £ 180°) + (833 m £ —90°) + (667 m £ 180°)
+ (417 m £ —90°) = (2668 m £ —76°).

(a) Thus, the magnitude of the net displacement is 2.7 km.

(b) Its direction is 76° clockwise (relative to the initial direction of motion).
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84. We compute the coordinate pairs (x, y) from x = (vo cos@)t and y = v, sin 6t — L gr*
for ¢ = 20 s and the speeds and angles given in the problem.

(a) We obtain
(x,, v,)=(10.1km, 0.56 km) (x5, y5)=(12.1km,1.51 km)
(xc» ye)=(14.3 km, 2.68 km) (x5, ¥p)=(16.4 km,3.99 km)

and (xg, yg) = (18.5 km, 5.53 km) which we plot in the next part.

(b) The vertical (y) and horizontal (x) axes are in kilometers. The graph does not start at
the origin. The curve to “fit” the data is not shown, but is easily imagined (forming the
“curtain of death™).
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85. Let v, = 21(0.200 m)/(0.00500 s) = 251 m/s (using Eq. 4-35) be the speed it had in
circular motion and &, = (1 hr)(360°/12 hr [for full rotation]) = 30.0°. Then Eq. 4-25 leads
to

(9.8 m/s*)(2.50 m)*

2(251 m/s)*(cos 30.0°) o

y=(2.50 m)tan 30.0° -

which means its height above the floor is 1.44 m + 1.20 m = 2.64 m.
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86. For circular motion, we must have v with direction perpendicular to ¥ and (since

the speed is constant) magnitude v=27zr/T where r = \/(2.00 m)® +(=3.00 m)> and

T=7.00s. The r (given in the problem statement) specifies a point in the fourth

quadrant, and since the motion is clockwise then the velocity must have both components
negative. Our result, satisfying these three conditions, (using unit-vector notation which
makes it easy to double-check that 7-¥ =0) for ¥ = (-2.69 m/s)1 + (~1.80 m/s)].
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87. Using Eq. 2-16, we obtain v> =v. —2gh, or h= (v, —v*)/2g.
0 0

(a) Since v=0at the maximum height of an upward motion, with v, =7.00 m/s, we
have 7 =(7.00 m/s)*/2(9.80 m/s*)=2.50 m.

(b) The relative speed is v, =v, —v, =7.00 m/s—3.00 m/s =4.00 m/s with respect to the
floor. Using the above equation we obtain % = (4.00 m/s)” /2(9.80 m/s*) = 0.82 m.

(c) The acceleration, or the rate of change of speed of the ball with respect to the ground
is 9.80 m/s* (downward).

(d) Since the elevator cab moves at constant velocity, the rate of change of speed of the
ball with respect to the cab floor is also 9.80 m/s* (downward).

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

88. Relative to the sled, the launch velocity is \7:”61 = Vox 1 T VoyJ . Since the sled’s
motion is in the negative direction with speed Vs (note that we are treating v as a positive

number, so the sled’s Veloc1ty is actually —vs1), then the launch velocity relative to the
ground is v, = (Vox—Vs) 1 + voy _] The horizontal and vertical displacement (relative to

the ground) are therefore
Xland — Xlaunch = Axbg (Vox Vs) tﬂlght

1 2
YVland — Ylaunch — 0= Voy tﬂight + b (_g)(tﬂight) .

Combining these equations leads to

2 00X YO 2 [0)
- (25,

The first term corresponds to the “y intercept” on the graph, and the second term (in
parentheses) corresponds to the magnitude of the “slope.” From Figure 4-54, we have

Ax,, =40—4v,.

This implies voy = (4.0 5)(9.8 m/ s)/2 = 19.6 m/s, and that furnishes enough information to
determine vy.

(2) Vox = 40g/2v0y = (40 m)(9.8 m/s%)/(39.2 m/s) = 10 m/s.
(b) As noted above, voy = 19.6 m/s.

(c) Relative to the sled, the displacement Axys does not depend on the sled’s speed, so
Axbs Vox tﬂlght 40 m.

(d) As in (c), relative to the sled, the displacement Axys does not depend on the sled’s
speed, and Axps = Vox triight = 40 m.
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89. We establish coordinates with i pointing to the far side of the river (perpendicular to
the current) and 3 pointing in the direction of the current. We are told that the magnitude
(presumed constant) of the velocity of the boat relative to the water is |V, | = 6.4 km/h.
Its angle, relative to the x axis is €. With km and h as the understood units, the velocity
of the water (relative to the ground) is v, , = (3.2 km/h)j.

(a) To reach a point “directly opposite” means that the velocity of her boat relative to
ground must be v,, = v, 1 where vy, > 0 is unknown. Thus, all j components must cancel

in the vector sum v,, + v = v, , which means the y, sin 6= (-3.2 km/h) 3, SO
0= sin"' [(-3.2 km/h)/(6.4 km/h)] = -30°.

(b) Using the result from part (a), we find vy = v3,, cos@ = 5.5 km/h. Thus, traveling a
distance of ¢/ = 6.4 km requires a time of (6.4 km)/(5.5 km/h) = 1.15 h or 69 min.

(c) If her motion is completely along the y axis (as the problem implies) then with v,,, =
3.2 km/h (the water speed) we have

__ b D 33y

bw + ng wa -V

wg
where D = 3.2 km. This is equivalent to 80 min.

(d) Since
D D D D
+ = +
Vhw+vwg vb TV vb -V Vhw + ng

W wg w wg

the answer is the same as in the previous part, i.e., ¢, = 80 min.

total

(e) The shortest-time path should have 8 =0°. This can also be shown by noting that the
case of general @leads to

Vg =V, tV,, =V,,0080 1 + (v, 8in @ +v, )]

where the x component of v,, must equal //z. Thus,

which can be minimized using dt/d@= 0.

(f) The above expression leads to ¢ = (6.4 km)/(6.4 km/h) = 1.0 h, or 60 min.
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90. We use a coordinate system with +x eastward and +y upward.

(a) We note that 123° is the angle between the initial position and later position vectors,
so that the angle from +x to the later position vector is 40° + 123° = 163°. In unit-vector
notation, the position vectors are

7 = (360 m)cos(40°)i + (360 m)sin(40°) j = (276 m)i+(231 m) ]
7, = (790 m) cos(163°)1 +(790 m) sin(163°) j = (—755 m)i+(231 m)]

~N

>

respectively. Consequently, we plug into Eq. 4-3
AF =[(=755m) — (276 m)]i+(231 m — 231 m)j =—(1031 m) i.
The magnitude of the displacement A7 is |A7 |=1031 m.

(b) The direction of A7 is —i , or westward.
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91. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable.

(a) With the origin at the firing point, the y coordinate of the bullet is given by
y=—21gt? If ¢ is the time of flight and y = — 0.019 m indicates where the bullet hits the
target, then

2(0.019 m)

t=|———" =6.2%x107s.
9.8 m/s

(b) The muzzle velocity is the initial (horizontal) velocity of the bullet. Since x = 30 m is
the horizontal position of the target, we have x = vyt. Thus,

py=2= UM 8107 s,
t 63x107s
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92. Eq. 4-34 describes an inverse proportionality between » and a, so that a large
acceleration results from a small radius. Thus, an upper limit for a corresponds to a lower
limit for r.

(a) The minimum turning radius of the train is given by

v> (216km/h)’ .
oy = —— = =73x10° m.
e (0.050)(98 m/s%)

(b) The speed of the train must be reduced to no more than

v=fa,,r =,0.050(9.8 m/s*)(1.00x10° m) =22 m/s

which is roughly 80 km/h.
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93. (a) With »=0.15m and a = 3.0 x 10" m/s?, Eq. 4-34 gives

v=alra =67x10° m/s.

(b) The period is given by Eq. 4-35:

7=2" _14x107s.
Vv
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94. We use Eq. 4-2 and Eq. 4-3.

(a) With the initial position vector as 7 and the later vector as 7,, Eq. 4-3 yields
Ar=[(-2.0 m)— 5.0 m]i +[(6.0m)—(=6.0 m)]j+ (2.0 m— 2.0 m)k = (7.0 m)i+ (12 m) ]
for the displacement vector in unit-vector notation.

(b) Since there is no z component (that is, the coefficient of k is zero), the displacement
vector is in the xy plane.
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95. We write our magnitude-angle results in the form (R £ 6) with SI units for the

magnitude understood (m for distances, m/s for speeds, m/s* for accelerations). All angles
0 are measured counterclockwise from +x, but we will occasionally refer to angles ¢
which are measured counterclockwise from the vertical line between the circle-center and
the coordinate origin and the line drawn from the circle-center to the particle location (see
r in the figure). We note that the speed of the particle is v =2m/T where » = 3.00 m and T
=20.0 s; thus, v =0.942 m/s. The particle is moving counterclockwise in Fig. 4-56.

(a) Att=15.0s, the particle has traveled a fraction of

5.00s 1

20.0s 4

!
T

of a full revolution around the circle (starting at the origin). Thus, relative to the circle-
center, the particle is at

6= %(360") =90°

measured from vertical (as explained above). Referring to Fig. 4-56, we see that this
position (which is the “3 o’clock™ position on the circle) corresponds tox = 3.0 m and y =
3.0 m relative to the coordinate origin. In our magnitude-angle notation, this is expressed

as (R£6)=(4.2£45°). Although this position is easy to analyze without resorting to

trigonometric relations, it is useful (for the computations below) to note that these values
of x and y relative to coordinate origin can be gotten from the angle ¢ from the relations

x=rsing, y=r—rcosg.

Of course, R =+/x"+y”> and € comes from choosing the appropriate possibility from
tan ' (y/x) (or by using particular functions of vector-capable calculators).

(b) At t = 7.5 s, the particle has traveled a fraction of 7.5/20 = 3/8 of a revolution around
the circle (starting at the origin). Relative to the circle-center, the particle is therefore at ¢
= 3/8 (360°) = 135° measured from vertical in the manner discussed above. Referring to
Fig. 4-56, we compute that this position corresponds to

x=(3.00 m)sin 135°=2.1m
y=(3.0m)— (3.0 m)cos 135°=5.1 m

relative to the coordinate origin. In our magnitude-angle notation, this is expressed as (R
Z 68)=(5.5 £ 68°).
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(c) At t=10.0 s, the particle has traveled a fraction of 10/20 = 1/2 of a revolution around
the circle. Relative to the circle-center, the particle is at ¢ = 180° measured from vertical
(see explanation, above). Referring to Fig. 4-56, we see that this position corresponds to x
=0 and y = 6.0 m relative to the coordinate origin. In our magnitude-angle notation, this

is expressed as (R£6)=(6.0£90°).
(d) We subtract the position vector in part (a) from the position vector in part (c):
(6.0£90°)—(4.2.£45°)=(4.2£135°)

using magnitude-angle notation (convenient when using vector-capable calculators). If
we wish instead to use unit-vector notation, we write

AR =(0-3.0m) i+ (6.0 m—3.0 m)j=(-3.0 m)i+(3.0 m)]
which leads to | AR |=4.2 m and 6= 135°,

(e) From Eq. 4-8, we have ¥, = AR/Ar. WithAr =5.0's, we have
B, = (<0.60 m/s) i+(0.60 m/s) ]

in unit-vector notation or (0.85 £ 135°) in magnitude-angle notation.

(f) The speed has already been noted (v = 0.94 m/s), but its direction is best seen by
referring again to Fig. 4-56. The velocity vector is tangent to the circle at its “3 o’clock

position” (see part (a)), which means v is vertical. Thus, our result is (0.94 £ 90°) .

(g) Again, the speed has been noted above (v = 0.94 m/s), but its direction is best seen by
referring to Fig. 4-56. The velocity vector is tangent to the circle at its “12 o’clock

position” (see part (c)), which means v is horizontal. Thus, our result is (0.94 £ 1800) .

(h) The acceleration has magnitude a = v*/r = 0.30 m/s%, and at this instant (see part (a)) it
is horizontal (towards the center of the circle). Thus, our result is (0.30 £ 180°).

(1) Again, a = v¥/r = 0.30 m/s%, but at this instant (see part (c)) it is vertical (towards the
center of the circle). Thus, our result is (0.30 £ 270°).
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96. Noting that v, =0, then, using Eq. 4-15, the average acceleration is

A 0-(630i-842])ms
a =—=
A 3s

=(-2.1i+2.8]) m/s’
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97. (a) The magnitude of the displacement vector A7 is given by

| A7 | =/(21.5 km)? + (9.7 km)? + (2.88 km)> =23.8 km.

Thus,
iy = A7 _238km g,
¢ At 3.50h
(b) The angle #in question is given by
6 =tan™ 288 km = 6.96°,

J21.5 km)> +(9.7 km)?
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98. The initial velocity has magnitude vy and because it is horizontal, it is equal to v, the
horizontal component of velocity at impact. Thus, the speed at impact is

2 2
Vo TV, =3V,

where v, =/2gh and we have used Eq. 2-16 with Ax replaced with 4 = 20 m. Squaring
both sides of the first equality and substituting from the second, we find

ve +2gh= (3\/0)2

which leads to gh = 4v; and therefore to v, = \/(9.8 m/s*)(20 m) /2 = 7.0 m/s.
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99. We choose horizontal x and vertical y axes such that both components of v, are

positive. Positive angles are counterclockwise from +x and negative angles are clockwise
from it. In unit-vector notation, the velocity at each instant during the projectile motion is

N

V=, cos 6, i+ (v,sin 6, — gt) j.

(a) With v = 30 m/s and & = 60°, we obtain v = (15f+6.43) m/s, for t = 2.0 s. The
magnitude of Vis |V |= \/(15 m/s)’ + (6.4 m/s)> =16 my/s.

(b) The direction of v is
6 =tan '[(6.4m/s)/(15m/s)]=23°,

measured counterclockwise from +x.

(c) Since the angle is positive, it is above the horizontal.

(d) With 1=5.0's, we find ¥ = (151 —23]) m/s, which yields

|7 = /(15 m/s)* + (=23 m/s)> =27 m/s.

(e) The direction of ¥ is @=tan '[(-23 m/s)/(15m/s)]=—-57°, or 57° measured
clockwise from +x.

(f) Since the angle is negative, it is below the horizontal.
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100. The velocity of Larry is v; and that of Curly is v,. Also, we denote the length of the
corridor by L. Now, Larry’s time of passage is #; = 150 s (which must equal L/v;), and
Curly’s time of passage is t» = 70 s (which must equal L/v;). The time Moe takes is
therefore
. L 1 B 1
vtv, V/L+v,/L 550+ 55
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101. We adopt the positive direction choices used in the textbook so that equations such
as Eq. 4-22 are directly applicable. The coordinate origin is at the initial position for the
football as it begins projectile motion in the sense of §4-5), and we let & be the angle of
its initial velocity measured from the +x axis.

(a) x =46 m and y = —1.5 m are the coordinates for the landing point; it lands at time ¢ =
4.5 s. Since x = v,
x 46m

v, =—
%t 455

=102 m /s.

Since y =v, 1 —gt’,

y+;g12 (-15 m)+;(9.8 m/s?)(45 s)’
P 45s

=217 m/s.

Vo

The magnitude of the initial velocity is

v, = ngx +vZ, =4/(102 m/s)* +(217 m/s)* =24 m/s.

(b) The initial angle satisfies tan 6, = vo,/vox. Thus, & = tan"' [(21.7 m/s)/(10.2 m/s) |=
65°.
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102. We assume the ball’s initial velocity is perpendicular to the plane of the net. We
choose coordinates so that (xo, yo) = (0, 3.0) m, and v, > 0 (note that vy, = 0).

(a) To (barely) clear the net, we have
_ I, _ 1 2\ .2
Y=Y =vt-ogt = 2.24m—3.0m—0—5(9.8m/s )t

which gives ¢ = 0.39 s for the time it is passing over the net. This is plugged into the x-
equation to yield the (minimum) initial velocity v, = (8.0 m)/(0.39 s) = 20.3 m/s.

(b) We require y = 0 and find ¢ from y—y(,:voyt—% gt . This value

(t = \/2(3.0 m)/(9.8 m/s’) =0.78 s) is plugged into the x-equation to yield the
(maximum) initial velocity v, = (17.0 m)/(0.78 s) = 21.7 m/s.
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103. (a) With Ax =8.0 m, = At;, a = ax, and vox = 0, Eq. 2-15 gives
8.0 m =3 ay(A1)?,
and the corresponding expression for motion along the y axis leads to
Ay=12m=73a,An)".
Dividing the second expression by the first leads to a,/a, =3/2=1.5.

(b) Letting ¢ = 2At,, then Eq. 2-15 leads to Ax = (8.0 m)(2)> = 32 m, which implies that its
x coordinate is now (4.0 + 32) m = 36 m. Similarly, Ay = (12 m)(2)* = 48 m, which
means its y coordinate has become (6.0 + 48) m = 54 m.
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104. We apply Eq. 4-34 to solve for speed v and Eq. 4-35 to find the period 7.

(a) We obtain

v=ra=[(50m)(7.0)(98 m/s*) =19 m/s.

(b) The time to go around once (the period) is 7= 27/v = 1.7 s. Therefore, in one minute
(t = 60 s), the astronaut executes

t_60s _ s
T 1.7s

revolutions. Thus, 35 rev/min is needed to produce a centripetal acceleration of 7g when
the radius is 5.0 m.

(c) As noted above, T=1.7 s.
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105. The radius of Earth may be found in Appendix C.

(a) The speed of an object at Earth’s equator is v = 2zR/T, where R is the radius of Earth
(6.37 x 10° m) and T'is the length of a day (8.64 x 10* s):

v=276.37 x 10° m)/(8.64 x 10" s) = 463 my/s.

The magnitude of the acceleration is given by

> (463m/s)’
a="—=%=0.034m/s2.
R 637x10°m

(b) If T is the period, then v =27R/T is the speed and the magnitude of the acceleration is

v\ _(27R/T)’ _4rn’R
R R T

6
T:Zﬂ\/Ezhr O3TXI0M _ 51510 s—84 min.
a 98m/s

Thus,
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106. When the escalator is stalled the speed of the person isv, =(/t, where [ is the

length of the escalator and ¢ is the time the person takes to walk up it. This is v, = (15
m)/(90 s) = 0.167 m/s. The escalator moves at v, = (15 m)/(60 s) = 0.250 m/s. The speed
of the person walking up the moving escalator is

v=v,+v,=0.167m/s + 0.250 m/s = 0.417 m/s

and the time taken to move the length of the escalator is

t=//v=(15m)/(0.417m/s)=36s.

If the various times given are independent of the escalator length, then the answer does
not depend on that length either. In terms of / (in meters) the speed (in meters per
second) of the person walking on the stalled escalator is ¢/90, the speed of the moving

escalator is //60, and the speed of the person walking on the moving escalator is
v=(£/90)+(¢/60)=0.0278/ . The time taken is ¢=//v=1/¢/0.0278/=36s and is
independent of /.
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107. (a) Eq. 2-15 can be applied to the vertical (y axis) motion related to reaching the
maximum height (when ¢t = 3.0 s and v, = 0):

1,
Ymax — Yo = Wi — Egt .
With ground level chosen so yy = 0, this equation gives the result ypmx = % 2(3.08)’ =44 m.

(b) After the moment it reached maximum height, it is falling; at ¢ = 2.5 s, it will have
fallen an amount given by Eq. 2-18:

1
Yrence = Ymax = (0)(2.5 ') =5 g(2.5'5)°

which leads to yfence = 13 m.

(c) Either the range formula, Eq. 4-26, can be used or one can note that after passing the
fence, it will strike the ground in 0.5 s (so that the total "fall-time" equals the "rise-time").
Since the horizontal component of velocity in a projectile-motion problem is constant
(neglecting air friction), we find the original x-component from 97.5 m = v(,(5.5 s) and
then apply it to that final 0.5 s. Thus, we find vy, = 17.7 m/s and that after the fence

Ax = (17.7 m/s)(0.5s) =8.9 m.
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108. With gz = 9.8128 m/s” and gy, = 9.7999 m/s*, we apply Eq. 4-26:

P R - vy Sin26, vy sin26, _ vq sin26, (gB _1]
M B
gy &s &5 Eu
which becomes

9.8128 m/s> j

R, —R,=R, | "~
v B(9.7999m/sz

and yields (upon substituting Rz = 8.09 m) Ryy— Rp=0.0l m=1 cm.
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109. We make use of Eq. 4-25.

(a) By rearranging Eq. 4-25, we obtain the initial speed:

X g
Vo =
cosf, \| 2(xtanf, — )

which yields vy = 255.5 = 2.6 X 10? m/s for x = 9400 m, y =-3300 m, and & = 35°.
(b) From Eq. 4-21, we obtain the time of flight:

X 9400 m

t= = =45s.
v,c0s8, (255.5m/s)cos35°

(c) We expect the air to provide resistance but no appreciable lift to the rock, so we
would need a greater launching speed to reach the same target.
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110. When moving in the same direction as the jet stream (of speed vs), the time is

__d
Vja+Vs’

4

where d = 4000 km is the distance and vj, is the speed of the jet relative to the air (1000
km/h). When moving against the jet stream, the time is

d

Vja — Vs

t2: s

70 .. . . .
where 6, —t, = 0 h . Combining these equations and using the quadratic formula to solve

gives vy = 143 km/h.
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111. Since the x and y components of the acceleration are constants, we can use Table 2-1
for the motion along both axes. This can be handled individually (for Ax and Ay) or
together with the unit-vector notation (for Ar). Where units are not shown, SI units are to
be understood.

(a) Since 7, =0, the position vector of the particle is (adapting Eq. 2-15)

A

at’ = (s.oj)r +%(4.0§ + 2.03):2 =(2.0%)i+(8.0r +1.0¢%).

F=v,t+

N | —

Therefore, we find when x = 29 m, by solving 2.0¢ = 29, which leads to # = 3.8 s. The y
coordinate at that time is y = (8.0 m/s)(3.8 s) + (1.0 m/s*)(3.8 s)* = 45 m.

(b) Adapting Eq. 2-11, the velocity of the particle is given by
v =y, +at.
Thus, at £ = 3.8 s, the velocity is

v =(8.0m/s)]+ ((4.0 m/s*)i+ (2.0 m/sz)j)(3.8 s)=(15.2 m/s)i+(15.6 m/s) ]

which has a magnitude of

v=\v? +v2 =152 m/s)? +(15.6 m/s)* =22 m/s.
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112. We make use of Eq. 4-34 and Eq. 4-35.

(a) The track radius is given by

_Y _(O2mis)

= 22 m
a 3.8 m/s?

(b) The period of the circular motion is 7= 2m(22 m)/(9.2 m/s) = 15 s.
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113. Since this problem involves constant downward acceleration of magnitude a, similar
to the projectile motion situation, we use the equations of §4-6 as long as we substitute a
for g. We adopt the positive direction choices used in the textbook so that equations such
as Eq. 4-22 are directly applicable. The initial velocity is horizontal so that v, =0 and

Vo, =V, =1.00x10° cm/s.

(a) If ¢is the length of a plate and ¢ is the time an electron is between the plates, then
¢ =v,t, where vy is the initial speed. Thus

Lo 200em ;%107
v, 1.00x10 cm/s

(b) The vertical displacement of the electron is
y :—%atZ =—% (1.00x10"7 cm/s*)(2.00x 107 s)" =—0.20cm =-2.00 mm,

or | y| =2.00 mm.

(¢) The x component of velocity does not change: v, = vy = 1.00 x 10° cm/s = 1.00 x 10’
m/s.

(d) The y component of the velocity is

v, =ait=(1.00x10"cm/s*)(2.00x107s) =2.00x 10" cm/s = 2.00x 10° m/s.
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114. We neglect air resistance, which justifies setting a = —g = —9.8 m/s” (taking down as
the —y direction) for the duration of the motion of the shot ball. We are allowed to use
Table 2-1 (with Ay replacing Ax) because the ball has constant acceleration motion. We
use primed variables (except #) with the constant-velocity elevator (so v'=10 m/s), and
unprimed variables with the ball (with initial velocity v, =v'+20=30 m/s, relative to the

ground). SI units are used throughout.

(a) Taking the time to be zero at the instant the ball is shot, we compute its maximum
height y (relative to the ground) with v’ =v] —2g(y—y,), where the highest point is
characterized by v = 0. Thus,
2
y=y,+t 20 —76m
2g

where y, =)/ +2=30 m (where y, =28 m is given in the problem) and vy = 30 m/s
relative to the ground as noted above.

(b) There are a variety of approaches to this question. One is to continue working in the
frame of reference adopted in part (a) (which treats the ground as motionless and “fixes”
the coordinate origin to it); in this case, one describes the elevator motion with
y'=y.+V't and the ball motion with Eq. 2-15, and solves them for the case where they
reach the same point at the same time. Another is to work in the frame of reference of the
elevator (the boy in the elevator might be oblivious to the fact the elevator is moving
since it isn’t accelerating), which is what we show here in detail:

vy, Ve, — 280,

g

1
Ay, :voet—agt2 = t

where vo. = 20 m/s is the initial velocity of the ball relative to the elevator and Ay, =
—2.0 m is the ball’s displacement relative to the floor of the elevator. The positive root is
chosen to yield a positive value for #; the resultis t =4.2 s.
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115. (a) With v=c/10=3x10" m/s and a =20g =196 m/s’, Eq. 4-34 gives
r=v"/a=4.6x10" m.

(b) The period is given by Eq. 4-35: T =27r/v=9.6x10" s.Thus, the time to make a
quarter-turn is 7/4 = 2.4 x 10’ s or about 2.8 days.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

116. Using the same coordinate system assumed in Eq. 4-25, we rearrange that equation
to solve for the initial speed:

Vv, = al g
0 cos @, (2 (xtan 8, — y)

which yields vy = 23 ft/s for g = 32 ft/s>, x = 13 ft, y = 3 ft and & = 55°.
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117. The (box)car has velocity v, =v1§ relative to the ground, and the bullet has
velocity
Vopg =V, €0801+v,s1n0]

relative to the ground before entering the car (we are neglecting the effects of gravity on
the bullet). While in the car, its velocity relative to the outside ground is

%,, = 08v, cos@1+0.8v,sin@j (due to the 20% reduction mentioned in the problem). The

problem indicates that the velocity of the bullet in the car relative to the car is (with v;

unspecified) v, =v, j. Now, Eq. 4-44 provides the condition
Vig =Vt V.,

c

~

0.8v, cos @ iJrO.8v2 sin @ ] =, j+v1 1

so that equating x components allows us to find 6. If one wished to find v one could also
equate the y components, and from this, if the car width were given, one could find the
time spent by the bullet in the car, but this information is not asked for (which is why the
width is irrelevant). Therefore, examining the x components in SI units leads to

92008_1( ! ]: (85 knvhvz%%mm)J

8v, 0.8 (650 m/s)

which yields 87° for the direction of v, (measured from f, which is the direction of

motion of the car). The problem asks, “from what direction was it fired?” — which
means the answer is not 87° but rather its supplement 93° (measured from the direction of
motion). Stating this more carefully, in the coordinate system we have adopted in our
solution, the bullet velocity vector is in the first quadrant, at 87° measured
counterclockwise from the +x direction (the direction of train motion), which means that
the direction from which the bullet came (where the sniper is) is in the third quadrant, at
—93° (that is, 93° measured clockwise from +x).
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118. Since vﬁ = voi —2gAy, and v,=0 at the target, we obtain

Yoy = /2(9.80 m/s?) (5.00 m) =9.90 mis

(a) Since vy sin & = vy, with vo = 12.0 m/s, we find &, = 55.6°.

(b) Now, v, = v, — gt gives ¢ = (9.90 m/s)/(9.80 m/s?) = 1.01 s. Thus, Ax = (vy cos Q)¢ =
6.85 m.

(c) The velocity at the target has only the v, component, which is equal to vy, = vy cos &
=6.78 m/s.
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119. From the figure, the three displacements can be written as
d =d (cos6,i+sin6,j) = (5.00 m)(cos 30°i +sin 30°j) = (4.33 m)i +(2.50 m)]

d, = d,[cos(180°+ 6, — 6,)i +sin(180°+6, — 6,)j] = (8.00 m)(cos 160° +sin 160°))
=(=7.52 m)i+(2.74 m)]

d, = d,[cos(360°— 8, — 6, +6,)i +sin(360°— 6, — 6, +8,)j] = (12.0 m)(cos 260°1 + sin 260°])
=(-2.08 m)i—(11.8 m)]

where the angles are measured from the +x axis. The net displacement is
d=d +d,+d,=(~5.27 m)i—(6.58 m)j.

(a) The magnitude of the net displacement is

|d I=/(=5.27 m)* +(~6.58 m)> =8.43 m.

(b) The direction of d is

d -
49:tan_l(d—y}:tan_l(%jZSIJ" or 231°.
~-5.27m

X

We choose 231° (measured counterclockwise from +x) since the desired angle is in the
third quadrant. An equivalent answer is —129° (measured clockwise from +x).
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120. With vo = 30.0 m/s and R = 20.0 m, Eq. 4-26 gives

R
sin26, = £ = 0.218.

Vo
Because sin ¢ = sin (180° — @), there are two roots of the above equation:
26, =sin"' (0.218) = 12.58°and 167.4°.

which correspond to the two possible launch angles that will hit the target (in the absence
of air friction and related effects).

(a) The smallest angle is & = 6.29°.
(b) The greatest angle is and &, = 83.7°.
An alternative approach to this problem in terms of Eq. 4-25 (with y =0 and 1/cos* =1 +

tan’) is possible — and leads to a quadratic equation for tan@, with the roots providing
these two possible & values.
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121. On the one hand, we could perform the vector addition of the displacements with a
vector-capable calculator in polar mode ((75 £ 37°)+ (65 £ — 90°)= (63 £ — 18°)),

but in keeping with Eq. 3-5 and Eq. 3-6 we will show the details in unit-vector notation.
We use a ‘standard’ coordinate system with +x East and +y North. Lengths are in
kilometers and times are in hours.

(a) We perform the vector addition of individual displacements to find the net
displacement of the camel.

A7 = (75 km)cos(37°)1 + (75 km) sin(37°)
AF, =(—65 km) ]
AF = A7 + AF, = (60 km)i—(20 km)] .

If it is desired to express this in magnitude-angle notation, then this is equivalent to a
vector of length | A7 |= /(60 km)*+(—20 km)? =63 km .

(b) The direction of A7 is @=tan '[(—=20 km)/(60 km)]=-18°, or 18°south of east.

(c) We use the result from part (a) in Eq. 4-8 along with the fact that Az = 90 h. In unit
vector notation, we obtain

. _ (60i-20]) km

= (0.671-0.227) km/h.

This leads to |v,,, | = 0.70 km/h.

(d) The direction of v, is 6= tan"'[(=0.22 km/h)/(0.67 km/h)]=-18°, or 18°south

of east.

(e) The average speed is distinguished from the magnitude of average velocity in that it
depends on the total distance as opposed to the net displacement. Since the camel travels
140 km, we obtain (140 km)/(90 h) = 1.56 km/h =1.6 km/h .

(f) The net displacement is required to be the 90 km East from A to B. The displacement
from the resting place to B is denoted A7;,. Thus, we must have

AF + AR, + AR, = (90 km) i

which produces A7 =(30 km)i+(20 km)j in unit-vector notation, or (36 £33°) in
magnitude-angle notation. Therefore, using Eq. 4-8 we obtain

B 36km

Vo |=——— =12kmh.
=1 (120-90) h

(g) The direction of v, is the same as 7 (that is, 33° north of east).
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122. We make use of Eq. 4-21 and Eq.4-22.

(a) With v, = 16 m/s, we square Eq. 4-21 and Eq. 4-22 and add them, then (using
Pythagoras’ theorem) take the square root to obtain 7:

F=y(r=x,)? + (7= 3,)* = /(v cO80t)* + (v, sin Gyt — gt* / 2)*

=t\/v§ —v,gsin6t+g’t’ /4

Below we plot r as a function of time for 6, = 40.0°:

Fim)
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(b) For this next graph for » versus ¢ we set 6, = 80.0°.
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(c) Differentiating » with respect to ¢, we obtain

dr v —3v,gtsin,/2+g’t*/2

dt \/vj—vogsin00t+g2t2/4

Setting dr/dt=0, with v,=16.0 m/sand 6, =40.0°, we have 256—151t+48 =0.

The equation has no real solution. This means that the maximum is reached at the end of
the flight, with

=2v,sin 6, / g =2(16.0 m/s)sin(40.0°) /(9.80 m/s*) =2.10 s.

ttotal
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(d) The value of r is given by

r=(2. 10)\/(16.0)2 —(16.0)(9.80)sin 40.0°(2.10) +(9.80)*(2.10)* /4 = 25.7 m.
(e) The horizontal distance is r. =v, cos,t =(16.0 m/s)cos40.0°(2.10s) =25.7 m.
() The vertical distance is 7, =0.

(g) For the & = 80° launch, the condition for maximum 7 is 256—232¢t+48t° =0, or
t =1.71 s (the other solution, # = 3.13 s, corresponds to a minimum.)

(h) The distance traveled is

r= (1.71)\/(16.0)2 —(16.0)(9.80)sin 80.0°(1.71)+(9.80)*(1.71)* /4 =13.5 m.
(1) The horizontal distance is
r. =v,cos6,t =(16.0 m/s)cos80.0°(1.71s) =4.75 m.

(j) The vertical distance is

t? (9.80 m/s*)(1.71s)?

1, =V, sin Hot—%:(l6.0 m/s)sin80°(1.71s)— 3 =12.6 m.
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123. Using the same coordinate system assumed in Eq. 4-25, we find x for the elevated
cannon from
g’

where y = -30 m.
2(v, cos 8,)

y=xtanf,— 5

Using the quadratic formula (choosing the positive root), we find

v, sin 6, +\/(v0 sinf,)’ —2gy
g

X =v,co0s6,

which yields x = 715 m for vy = 82 m/s and € = 45°. This is 29 m longer than the 686 m
found in that Sample Problem. Since the “9” in 29 m is not reliable, due to the low level

of precision in the given data, we write the answer as 3x10' m.
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124. (a) Using the same coordinate system assumed in Eq. 4-25, we find

2 2
L & ifg,=0.

2(v, cos8,)’ 202

y=xtan6, —

Thus, with v = 3.0 x 10° m/s and x = 1.0 m, we obtain y = —-5.4 X 10"* m which is not
practical to measure (and suggests why gravitational processes play such a small role in
the fields of atomic and subatomic physics).

(b) It is clear from the above expression that |y| decreases as vy is increased.
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125. At maximum height, the y-component of a projectile’s velocity vanishes, so the
given 10 m/s is the (constant) x-component of velocity.

(a) Using vy, to denote the y-velocity 1.0 s before reaching the maximum height, then
(with v, = 0) the equation v, = vo, — gt leads to vo, = 9.8 m/s. The magnitude of the
velocity vector (or speed) at that moment is therefore

v+ vt =10 m/s)? + (9.8 mis)? =14 ms.

(b) It is clear from the symmetry of the problem that the speed is the same 1.0 s after
reaching the top, as it was 1.0 s before (14 m/s again). This may be verified by using v, =

voy, — gt again but now “starting the clock™ at the highest point so that vo, = 0 (and
£=1.0's). This leads to v, = -9.8 m/s and /(10 m/s)’ + (~9.8 m/s)’ =14 m/s

(¢) The xo value may be obtained from x = 0 = xy + (10 m/s)(1.0s), which yields
X, =—10m.

(d) With vg, = 9.8 m/s denoting the y-component of velocity one second before the top of
the trajectory, then we have y=0=y, +v, - Lgt* where ¢ = 1.0 s. This yields

Vo =49 m.
(e) By using x — xo = (10 m/s)(1.0 s) where xo = 0, we obtain x = 10 m.

Let £ =0 at the top with y, =v,. =0.Fromy — y, =v, t — 2 ot*, we have, fort=1.0s,
p Yo =Voy Y=Yo=Vo,t =28

y=—(9.8m/s>)(1.0s)° /2 =-4.9 m.
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126. With no acceleration in the x direction yet a constant acceleration of 1.4 m/s” in the y
direction, the position (in meters) as a function of time (in seconds) must be

l_,.’

(6.00)i + (%(1.4)#]}
and v is its derivative with respect to ¢.
(a) Att=3.0s, therefore, v = (6.01 + 4.23') m/s.

(b) At£=3.0's, the position is 7 = (181 + 6.3]) m.
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127. We note that
Vo =Vps V46

describes a right triangle, with one leg being v,; (east), another leg being v,
(magnitude = 20, direction = south), and the hypotenuse being v,, (magnitude = 70).
Lengths are in kilometers and time is in hours. Using the Pythagorean theorem, we have

Wi =[P P+ e P = 70 kiv/h = | B, [* + (20 knvh)?

which is easily solved for the ground speed: |v,;| = 67 km/h.
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128. The figure offers many interesting points to analyze, and others are easily inferred
(such as the point of maximum height). The focus here, to begin with, will be the final
point shown (1.25 s after the ball is released) which is when the ball returns to its original
height. In English units, g = 32 ft/s”.

(a) Using x — xo = v, we obtain v, = (40 ft)/(1.25 s) =32 ft/s. And y—y, =0=v, ¢ —Lgt’
yields v,, =4(32 ft/s*)(1.25s) = 20 fi/s. Thus, the initial speed is

v, = [%, = /(32 ft/s)® +(20 fi/s)* =38 fi/s.

(b) Since v, = 0 at the maximum height and the horizontal velocity stays constant, then
the speed at the top is the same as v, = 32 ft/s.

(c) We can infer from the figure (or compute fromv, =0=v, — gt) that the time to reach
the top is 0.625 s. With this, we can use y—y, =v, 1 —1 gt? to obtain 9.3 ft (where yo =

3 ft has been used). An alternative approach is to use vﬁ = ng -2g(y -y, )
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129. We denote v, as the velocity of the plane relative to the
ground, v, as the velocity of the air relative to the ground, and
vy, as the velocity of the plane relative to the air.

(a) The vector diagram is shown on the right: v, =V,, +V,;.

Since the magnitudes vpg and vpa are equal the triangle is
1sosceles, with two sides of equal length.

Consider either of the right triangles formed when the bisector

of @is drawn (the dashed line). It bisects v, , so

sin(60/2) = Vag_ _ 70.0m1'/h
2vps  2(135mi/h)

which leads to 6 = 30.1°. Now V,, makes the same angle with the E-W line as the

dashed line does with the N-S line. The wind is blowing in the direction 15.0° north of
west. Thus, it is blowing from 75.0° east of south.

(b) The plane is headed along v,, , in the direction 30.0° east of north. There is another

solution, with the plane headed 30.0° west of north and the wind blowing 15° north of
east (that is, from 75° west of south).
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130. Taking derivatives of 7 = 211+ 2sin(rzt/ 4)3 (with lengths in meters, time in seconds
and angles in radians) provides expressions for velocity and acceleration:

dr ~ T (ﬂ'l‘]c
=—=2i+—cos| — |]
2 4

v
dt
o dv . (mja
d=—=——sin| —|j.
dt 8 4
Thus, we obtain:
time ¢ 0.0 1.0 2.0 3.0 4.0
- X 0.0 2.0 4.0 6.0 8.0

r
@ | position |, | 00 | 14 | 20 | 14 | 00

\7 Vy 2.0 2.0 2.0
(b) velocity v, 1.1 0.0 -1.1

a—> ay 0.0 0.0 0.0
(©) | acceleration a, —0.87 | -1.2 | —0.87

And the path of the particle in the xy plane is shown in the following graph. The arrows
indicating the velocities are not shown here, but they would appear as tangent-lines, as
expected.
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131. We make use of Eq. 4-24 and Eq. 4-25.
(a) With x = 180 m, &, =30°, and v, = 43 m/s, we obtain

(9.8 m/s*)(180 m)*

=tan(30°)(180 m)— =
»=tan(30°)(180 m) 2(43 m/s)*(cos 30°)°

or | y|=11 m. This implies the rise is roughly eleven meters above the fairway.
(b) The horizontal component (in the absence of air friction) is unchanged, but the

vertical component increases (see Eq. 4-24). The Pythagorean theorem then gives the
magnitude of final velocity (right before striking the ground): 45 m/s.
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132. We let g, denote the magnitude of the gravitational acceleration on the planet. A
number of the points on the graph (including some “inferred” points — such as the max
height point at x = 12.5 m and # = 1.25 s) can be analyzed profitably; for future reference,
we label (with subscripts) the first ((xo, yo) = (0, 2) at zo = 0) and last (“final”) points ((xs
vy = (25, 2) at ty=2.5), with lengths in meters and time in seconds.

(a) The x-component of the initial velocity is found from x; — xo = vo, ¢ Therefore,
v, =25/25=10m/s. And we try to obtain the y-component from
V=¥ =0=vt, — 3 gpt;. This gives us vg, = 1.25g,, and we see we need another
equation (by analyzing another point, say, the next-to-last one) y — y, =v, - 3 gpt2

with y = 6 and ¢ = 2; this produces our second equation vy, = 2 + g,. Simultaneous
solution of these two equations produces results for vo, and g, (relevant to part (b)). Thus,

our complete answer for the initial velocity is v = (10 m/sﬁ +(10 m/s)j .

(b) As a by-product of the part (a) computations, we have g, = 8.0 m/s.

2

2 leads to a

(¢) Solving for z, (the time to reach the ground) in y, =0=y, + v, 7, - 38,1

positive answer: f; = 2.7 s.

(d) With g = 9.8 m/s*, the method employed in part (c) would produce the quadratic
equation —4.9¢; +10z, +2 =0 and then the positive result 7, =2.2s.
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1. We apply Newton’s second law (specifically, Eq. 5-2).

(a) We find the x component of the force is

F,=ma, =ma cos 20.0°=(1.00kg) (2.00m/s*) cos 20.0°=1.88N.

(b) The y component of the force is

F,=ma,=masin 20.0°=(1.0kg) (2.00m/s’) sin 20.0°=0.684N.

(¢) In unit-vector notation, the force vector is

F=Fi+Fj=(18N)i +(0.684 N)].
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2. We apply Newton’s second law (Eq 5-1 or, equivalently, Eq. 5-2). The net force
applied on the chopping block is F o = F + F2 , where the vector addition is done using

unit-vector notation. The acceleration of the block is given by a = (1’7l + FZ) / m.

(a) In the first case

—

F+F,=[(3.0N)i+ (40N)j |+ | (-3.0N)i+ (-4.0N)j| =0

so a=0.

(b) In the second case, the acceleration a equals

F+F ((BON)i+ (40N)j) + ((-3.0N)i+ (4.0N)j)

+ A
= =(4.0m/s*)j.
m 2.0kg ( 5]
(c) In this final situation, a is
Eo 7 ((3B.O0N)i+ (4.0N)j) + ((3.0N)i+ (—4.0N)]j .
F+F :(( )i+ (40N)j) + ((3.0N)i+ ( ) ):(3'Om/52)i.
m 2.0kg
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3. We are only concerned with horizontal forces in this problem (gravity plays no direct
role). We take East as the +x direction and North as +y. This calculation is efficiently
implemented on a vector-capable calculator, using magnitude-angle notation (with SI
units understood).

= =(29 £53°
3.0 ( )

a=

F_(90£0°)+(80£118)
m

Therefore, the acceleration has a magnitude of 2.9 m/s”.
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4. We note that ma = (-16 N)f + (12 N)j . With the other forces as specified in the
problem, then Newton’s second law gives the third force as

Fy =ma—F, — F, =(-34N)i-(12N)].
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5. We denote the two forces F, and F, . According to Newton’s second law,
E + F,=md,so F,=ma — F,.

(a) In unit vector notation 7, =(20.0 N)i and
d=—(12.0sin 30.0°m/s” )i — (12.0 cos 30.0°m/s ) j = —(6.00 m/s” )i — (10.4m/s” ).
Therefore,

F, =(2.00kg) (-6.00m/s*) i+ (2.00 kg) (~10.4 m/s*)j - (20.0N)i

(-32.0N)i- (20.8 N)j.

(b) The magnitude of 17“2 is

| Fy = JFL+F ={(-32.0N)* +(-20.8 N)* =38.2 N.

(c) The angle that Fz makes with the positive x axis is found from

tan 6= (Fa/F>) = [(—20.8 N)/(-32.0 N)] = 0.656.
Consequently, the angle is either 33.0° or 33.0° + 180° = 213°. Since both the x and y

components are negative, the correct result is 213°. An alternative answer 1is
213°-360°=-147°.
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6. Since v = constant, we have @ = 0, which implies

|
|
|

I
—+
I
3
Qy
Il
S

=3
Q
PN
—_

Thus, the other force must be

F,=-F=(2N)i+(6N)].
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= F + F, + F, where the vector
addition is done using unit-vector notation. The acceleration of the block is given by
i=(F +F +F)/m.

7. The net force applied on the chopping block is F,

et

(a) The forces exerted by the three astronauts can be expressed in unit-vector notation as
follows:

A

F =32 N)(cos 30°1 + sin 3001) =(27.7N)i +(16 N)]
E, =(55 N)(cos 0°1 + sin 003) =(55N)i
F,=(41 N)(cos(—6()°)i + sin(—600)j) =(20.5N)i - (35.5N)j.

The resultant acceleration of the asteroid of mass m = 120 kg is therefore

(27.78+16]) N+(551) N+ (20.51 -35.5]) N
120kg

a =

=(0.86m/s%)i — (0.16m/s%)].

(b) The magnitude of the acceleration vector is

ja|=1Ja> + a* = \/(0.86 m/s®)® + (-0.16 m/s*)” =0.88 m/s” .

(c) The vector a makes an angle € with the +x axis, where

_ 2
@ =tan"' e =tan"’ Lm/s; =-11°.
a 0.86 m/s

X
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7
5 .
8. Since the tire remains stationary, by Newton’s second law, \ e
the net force must be zero: ™, T
R 80NSD
F,.=F,+F,+F.=ma=0.
From the free-body diagram shown on the right, we have EJ;
¥

O:ZFHM =F.cos¢—F, cos@
OZZFneW =F,;sin@+F_.sing—-F,

To solve for Fy, we first compute ¢. With F/, =220 N, F,. =170 N and € =47°, we get

F,cos6 (220 N)cos47.0°

=0.883 = ¢=28.0°
F. 170 N

cos@ =

Substituting the value into the second force equation, we find

F, =F, sin @+ F, sin ¢ = (220 N)sin 47.0°+ (170 N)sin 28.0 = 241 N.
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9. The velocity is the derivative (with respect to time) of given function x, and the
acceleration is the derivative of the velocity. Thus, a = 2¢ — 3(2.0)(2.0)¢, which we use in
Newton’s second law: F = (2.0 kg)a = 4.0c — 24¢ (with SI units understood). At¢=3.0s,
we are told that 7= —36 N. Thus, —36 = 4.0c — 24(3.0) can be used to solve for ¢. The

result is ¢ = +9.0 m/s>.
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10. To solve the problem, we note that acceleration is the second time derivative of the
position function, and the net force is related to the acceleration via Newton’s second
law. Thus, differentiating

x(¢) =—13.00+2.00¢ +4.00¢* —3.00£°

twice with respect to ¢, we get

2
& .00+8.000-9.002, ¥ -800-18.0r
dt dt

The net force acting on the particle at t=3.40s is

2
F= m%i = (0.150)[8.00—18.0(3.40)]i = (=7.98 N)i
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11. To solve the problem, we note that acceleration is the second time derivative of the
position function; it is a vector and can be determined from its components. The net force
is related to the acceleration via Newton’s second law. Thus, differentiating

x(t) =—15.0+2.00¢ + 4.00¢° twice with respect to ¢, we get

2
& p00-1200, TE= 2400
di di

Similarly, differentiating y(¢) =25.0+7.00t —9.00¢> twice with respect to ¢ yields

2
D _700-1801, ¥ =180
dt dt
(a) The acceleration is
2 v d’xr dlys 2 A
d=ai+a j= 1+—==(-24.0¢)i+(-18.0);.
dta )=t ( )i+ ( )]

At t=0.700s, we have a = (—16.8)§ +(—18.0)3’ with a magnitude of

a=|d|=(~16.8)* +(~18.0)’ =24.6 m/s’.
Thus, the magnitude of the force is F = ma = (0.34 kg)(24.6 m/s*) =8.37 N.

(b) The angle F or d = F /m makes with +x is

a _ 2
f=tan"'| -~ |=tan™ M =47.0° or —133°.
a —-16.8 m/s

X

We choose the latter (—133°) since F is in the third quadrant.

(c) The direction of travel is the direction of a tangent to the path, which is the direction
of the velocity vector:

V() =vi+v,] =%i+%j =(2.00—12.0£*)i +(7.00—18.0¢)].

At t=0.700s, we have v(#=0.700s) = (—3.88 m/s)i +(-5.60 rn/s)j. Therefore, the angle
v makes with +x is

0, =tan™' % |- tan™ -00ms | _ 55.3%0or —125°.
v —3.88 m/s

X

We choose the latter (—125°) since Vv is in the third quadrant.
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12. From the slope of the graph we find a, = 3.0 m/s%. Applying Newton’s second law to
the x axis (and taking 0 to be the angle between F; and F3), we have

F,+F,cos8 = ma, = 6=56°.
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13. (a) — (c) In all three cases the scale is not accelerating, which means that the two
cords exert forces of equal magnitude on it. The scale reads the magnitude of either of
these forces. In each case the tension force of the cord attached to the salami must be the
same in magnitude as the weight of the salami because the salami is not accelerating.
Thus the scale reading is mg, where m is the mass of the salami. Its value is (11.0 kg) (9.8
m/s”) = 108 N.
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14. Three vertical forces are acting on the block: the earth pulls down on the block with
gravitational force 3.0 N; a spring pulls up on the block with elastic force 1.0 N; and, the
surface pushes up on the block with normal force F. There is no acceleration, so

Y F,=0=F, + (1.ON) + (-3.0N)
yields Fy=2.0 N.

(a) By Newton’s third law, the force exerted by the block on the surface has that same
magnitude but opposite direction: 2.0 N.

(b) The direction is down.
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15. (a) From the fact that 73 = 9.8 N, we conclude the mass of disk D is 1.0 kg. Both this
and that of disk C cause the tension 7> = 49 N, which allows us to conclude that disk C
has a mass of 4.0 kg. The weights of these two disks plus that of disk B determine the
tension 77 = 58.8 N, which leads to the conclusion that mz = 1.0 kg. The weights of all
the disks must add to the 98 N force described in the problem; therefore, disk 4 has mass
4.0 kg.

(b) mp = 1.0 kg, as found in part (a).
(c) mc=4.0 kg, as found in part (a).

(d) mp = 1.0 kg, as found in part (a).
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16. (a) There are six legs, and the vertical component of the tension force in each leg is
T'sin @ where 6 =40°. For vertical equilibrium (zero acceleration in the y direction) then
Newton’s second law leads to

mg

67Tsin@=mg =T =—
6sin @

which (expressed as a multiple of the bug’s weight mg) gives roughly 7/mg = 0.26 0.
(b) The angle @1is measured from horizontal, so as the insect “straightens out the legs” &

will increase (getting closer to 90°), which causes siné to increase (getting closer to 1)
and consequently (since sinf1is in the denominator) causes 7 to decrease.
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17. (a) The coin undergoes free fall. Therefore, with respect to ground, its acceleration is

G =g=(-9.8m/s%)].

acoin

(b) Since the customer is being pulled down with an acceleration of
a =1.24g =(-12.15 m/sz)j, the acceleration of the coin with respect to the

customer

customer is

i, =d. . —a.,. . =(-9.8m/s%)j—(=12.15m/s?)] = (+2.35 m/s)].

re coin acustomer

(c) The time it takes for the coin to reach the ceiling is

- [P pe20m
a., 2.35m/s

(d) Since gravity is the only force acting on the coin, the actual force on the coin is

=ma,, =mg=(0.567x10" kg)(=9.8 m/s?)j=(-5.56x10" N);.

coin

(e) In the customer’s frame, the coin travels upward at a constant acceleration. Therefore,
the apparent force on the coin is

F_ =ma_ =(0.567x10" kg)(+2.35 m/s?)j = (+1.33x107 N)j.

app
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18. We note that the rope is 22.0° from vertical — and therefore 68.0° from horizontal.

(a) With T= 760 N, then its components are
T = Tcos 68.0° i+Tsin 68.0°]=(285N)i+(705N)].

(b) No longer in contact with the cliff, the only other force on Tarzan is due to earth’s
gravity (his weight). Thus,

E_ =T+W=(285N)i+(705N)j— (820 N) j = (285N)i—(115 N)]j.

1«

(c) In a manner that is efficiently implemented on a vector-capable calculator, we
convert from rectangular (x, y) components to magnitude-angle notation:

F,, = (285, —115) — (307£-22.0°)
so that the net force has a magnitude of 307 N.

(d) The angle (see part (¢)) has been found to be —22.0°, or 22.0° below horizontal (away
from cliff).

(e) Since a = Iiet/m where m = W/g = 83.7 kg, we obtain @ = 3.67 m/s’ .

(f) Eq. 5-1 requires that 4 || Iiet so that the angle is also —22.0°, or 22.0° below horizontal
(away from cliff).
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19. (a) Since the acceleration of the block is zero, the components of the Newton’s
second law equation yield
T—mgsin @ =0
Fy—mgcos 8 =0.

Solving the first equation for the tension in the string, we find
T =mgsin®= (85 kg)(98 m/s”) sin30° =42 N .
(b) We solve the second equation in part (a) for the normal force Fy:
F,, =mgcos6=(8.5 kg)(9.8 m/s*) cos 30° =72 N .

(c) When the string is cut, it no longer exerts a force on the block and the block
accelerates. The x component of the second law becomes —mgsind = ma, so the
acceleration becomes

a=-gsin @=—(9.8 m/s’)sin 30° = —4.9 m/s’.

The negative sign indicates the acceleration is down the plane. The magnitude of the
acceleration is 4.9 m/s’.
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20. We take rightwards as the +x direction. Thus, F] = (20 N)f. In each case, we use

Newton’s second law F, + F, = mid where m = 2.0 kg.

(@) If @=(+10 m/s*) i, then the equation above gives 17“2 =0.
(b) If, @ = (+20m/s?) i, then that equation gives F, = (20N)i.
(¢c)If a =0, then the equation gives 17“2 = (-20N) i.

(d)If @ = (=10 m/s®) i, the equation gives F, = (—40N)i.

(e) If a=(-20m/s*) f, the equation gives 1'3’2 = (—60N) i
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21. (a) The slope of each graph gives the corresponding component of acceleration.
Thus, we find a, = 3.00 m/s* and @y = —5.00 m/s’. The magnitude of the acceleration

vector is therefore a=\/(3.00 m/s’)* +(=5.00m/s*)* =5.83 m/s”, and the force is

obtained from this by multiplying with the mass (m= 2.00 kg). The result is F' = ma
=11.7 N.

(b) The direction of the force is the same as that of the acceleration:

@=tan"' [(—5.00 m/s%)/(3.00 m/s*)] = —59.0°.
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22. The free-body diagram of the cars is shown on the right. The

force exerted by John Massis is ¥ 7
I L)
F=2.5mg =2.5(80kg)(9.8 m/s*)=1960 N . : /_/-’é/’,
D
Since the motion is along the horizontal x-axis, using Newton’s > FI

second law, we have Fx=Fcos@=Ma_, where M is the total
mass of the railroad cars. Thus, the acceleration of the cars is

av:Fcosé?: (19605N)cos30 : 0,024 m/s’. &
} M (7.0x10° N/9.8 m/s”) -5

Using Eq. 2-16, the speed of the car at the end of the pull is

v, =[2a,Ax =/2(0.024 m/s*)(1.0 m) = 0.2 m/s.
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23. (a) The acceleration is
F_2ON oo m/s” .
m  900kg

(b) The distance traveled in 1 day (= 86400 s) is

s = %aﬁ =% (00222 m/s?) (86400s)° =83 x 10" m .

(c) The speed it will be traveling is given by

v =at =(0.0222 m/s”) (86400 s) =1.9x 10’ m/s .
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24. Some assumptions (not so much for realism but rather in the interest of using the
given information efficiently) are needed in this calculation: we assume the fishing line
and the path of the salmon are horizontal. Thus, the weight of the fish contributes only
(via Eq. 5-12) to information about its mass (m = W/g = 8.7 kg). Our +x axis is in the
direction of the salmon’s velocity (away from the fisherman), so that its acceleration
(‘“deceleration”) is negative-valued and the force of tension is in the —x direction:

T = —T. Weuse Eq. 2-16 and SI units (noting that v = 0).

v _ (28mis) _

= -36 m/s>.
2Ax 2(0.11m)

v2=v§+2an = a=-

Assuming there are no significant horizontal forces other than the tension, Eq. 5-1 leads
to

T=mi = -T=(87kg)(-36m/s’)

which results in 7= 3.1 x 10*> N.
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F

net

25. In terms of magnitudes, Newton’s second law is F' = ma, where F' =

,a=|dl,
and m is the (always positive) mass. The magnitude of the acceleration can be found
using constant acceleration kinematics (Table 2-1). Solving v = vy + at for the case where

it starts from rest, we have a = v/t (which we interpret in terms of magnitudes, making
specification of coordinate directions unnecessary). The velocity is

v = (1600 km/h) (1000 m/km)/(3600 s/h) = 444 m/s,
SO

444m/s
1.8s

F =ma=m>=(500kg) —12x10° N.
4
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26. The stopping force F and the path of the passenger are horizontal. Our +x axis is in
the direction of the passenger’s motion, so that the passenger’s acceleration
(‘“deceleration” ) is negative-valued and the stopping force is in the —x direction:

F =—F1i. Using Eq. 2-16 with
vo = (53 km/h)(1000 m/km)/(3600 s/h) = 14.7 m/s
and v = 0, the acceleration is found to be

v _ (147 /sy’

- =—167 m/s>.
2Ax 2(0.65 m)

V=) +2ah = a=-

Assuming there are no significant horizontal forces other than the stopping force, Eq. 5-1
leads to

F=mi = -F=(41kg)(-167m/s’)

which results in F = 6.8 x 10° N.
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27. We choose up as the +y direction, so a = (=3.00 m/ sz)j (which, without the unit-
vector, we denote as a since this is a 1-dimensional problem in which Table 2-1 applies).
From Eq. 5-12, we obtain the firefighter’s mass: m = W/g = 72.7 kg.

(a) We denote the force exerted by the pole on the firefighter Ep =K, 3 and apply Eq.

5-1. Since F._, =md , we have
F,-F,=ma = F,—712N=(72.7 kg)(-3.00 m/s’)
which yields Fr, = 494 N.

(b) The fact that the result is positive means Ep points up.

(c) Newton’s third law indicates Ep = —F _, which leads to the conclusion that

pf ?
|F,| =494 N.

(d) The direction of 13lDf is down.
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28. The stopping force F and the path of the toothpick are horizontal. Our +x axis is in
the direction of the toothpick’s motion, so that the toothpick’s acceleration
(‘‘deceleration”) is negative-valued and the stopping force is in the —x direction:

F=-Fi. Using Eq. 2-16 with vo =220 m/s and v = 0, the acceleration is found to be

Vo _ (220 m/s)’

= =—1.61x10° m/s>.
2Ax 2(0.015 m)

V=, +2aA = a=-—

Thus, the magnitude of the force exerted by the branch on the toothpick is

F=m|a|=(1.3x10"kg)(1.61x10° m/s*)=2.1x10> N.
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29. The acceleration of the electron is vertical and for all practical purposes the only force
acting on it is the electric force. The force of gravity is negligible. We take the +x axis to
be in the direction of the initial velocity and the +y axis to be in the direction of the
electrical force, and place the origin at the initial position of the electron. Since the force
and acceleration are constant, we use the equations from Table 2-1: x = vyt and

——at’ =—|—|7F.
7 2(mj

The time taken by the electron to travel a distance x (= 30 mm) horizontally is ¢ = x/vy and
its deflection in the direction of the force is

1F(xY 1(45x10N ) 30x10°m .
y:—— JR— = ey > :15X10 m.
2m v, ) 21911x107 kg )\ 1.2 % 10" m/s
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30. The stopping force F and the path of the car are horizontal. Thus, the weight of the
car contributes only (via Eq. 5-12) to information about its mass (m = W/g = 1327 kg).
Our +x axis is in the direction of the car’s velocity, so that its acceleration
(““deceleration”) is negative-valued and the stopping force is in the —x direction:

F=-Fi.
(a) We use Eq. 2-16 and SI units (noting that v =0 and vy = 40(1000/3600) = 11.1 m/s).

ve _ (11.1m/s)°
2Ax 2(15m)

v =y, +2aAx = a=-—

which yields a = — 4.12 m/s”. Assuming there are no significant horizontal forces other
than the stopping force, Eq. 5-1 leads to

—

F=mi = -F=(1327kg) (-4.12 m/s’)

which results in = 5.5 x 10° N.
(b) Eq. 2-11 readily yields t = —vo/a = 2.7 s.

(c) Keeping F the same means keeping a the same, in which case (since v = 0) Eq. 2-16
expresses a direct proportionality between Ax and v; . Therefore, doubling vy means
quadrupling Ax . That is, the new over the old stopping distances is a factor of 4.0.

(d) Eq. 2-11 illustrates a direct proportionality between ¢ and vy so that doubling one

means doubling the other. That is, the new time of stopping is a factor of 2.0 greater than
the one found in part (b).
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31. The acceleration vector as a function of time is

. dav d
a=—=

—(8.00t i +3.00¢ j‘) m/s = (8.00 i +6.00¢ j) m/s’.
dt  dt

(a) The magnitude of the force acting on the particle is

F=ma=m|ad|= (3.00)\/(8.00)2 +(6.007)* =(3.00)/64.0+36.0 > N.
Thus, F =35.0 N corresponds to # =1.415s, and the acceleration vector at this instant is
d =[8.001+6.00(1.415) j]m/s> = (8.00 m/s’) i+ (8.49 m/s?)].

The angle a makes with +x is

2
6, =tan™' L= tan m =46.7°.
a 8.00 m/s

X

(b) The velocity vector at t =1.415s 1is
= [8.00(1.415) 1+3.00(1.415)° ﬂm/s =(11.3m/s) i +(6.01 m/s)].

Therefore, the angle v makes with +x is

6, =tan™' Y| ot | SOLYS T g e
v 11.3m/s

X
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32. We resolve this horizontal force into appropriate components.

_ , Fo= st
(a) Newton’s second law applied to the x-axis P w
produces i \ E
\'x‘_ \”:-* r
F cos@ — mg sin@ = ma. F. Fsing
For a = 0, this yields F = 566 N. P

(b) Applying Newton’s second law to the y axis (where there is no acceleration), we have
F, —Fsin 8—mgcos 8= 0

which yields the normal force Fy=1.13 x 10° N.
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33. (a) Since friction is negligible the force of the girl is the only horizontal force on the
sled. The vertical forces (the force of gravity and the normal force of the ice) sum to zero.
The acceleration of the sled is

ag:£=ﬂ20.62m/sz.
- m, 84kg

(b) According to Newton’s third law, the force of the sled on the girl is also 5.2 N. Her
acceleration is

F 52N
a,=—="=013m/s" .
m, 40kg
(c) The accelerations of the sled and girl are in opposite directions. Assuming the girl
starts at the origin and moves in the +x direction, her coordinate is given by x, =5 a gtz.
The sled starts at xo = 15 m and moves in the —x direction. Its coordinate is given by

— L, 2 -
x, =x,—7at . They meet when x, =x, or

This occurs at time

‘= 2x,
V a, +a,

By then, the girl has gone the distance

. _la tz— xoag _ (lSm)(O.13m/sz)
© 2°%  a,+a  0.13m/s’ +0.62m/s’

=2.6m.
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5
34. (a) Using notation suitable to a vector capable calculator, the F,, = 0 condition
becomes

F,+ F+ F, = (6.00£150°) + (7.00 £ -60.0° + F, =0.
Thus, F; = (1.70 N) i + (3.06 N);.

(b) A constant velocity condition requires zero acceleration, so the answer is the same.

(c) Now, the acceleration is @ =(13.0 m/sz)f— (14.0 m/s2)3 . Using F—>net =mad (with m
= 0.025 kg) we now obtain

Fy =(.02N)i+ (271 N);.
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35. The free-body diagram is shown next. F“N is the
normal force of the plane on the block and mg is the
force of gravity on the block. We take the +x direction to
be down the incline, in the direction of the acceleration,
and the +y direction to be in the direction of the normal
force exerted by the incline on the block. The x *
component of Newton’s second law is then mg sin 6 =
ma; thus, the acceleration is a = g sin 6.

(a) Placing the origin at the bottom of the plane, the kinematic equations (Table 2-1) for
motion along the x axis which we will use are v’ =v; +2ax and v=v,+at . The block

momentarily stops at its highest point, where v = 0; according to the second equation, this
occurs at time ¢ =—v, /a . The position where it stops is

2 _ 2
weodo 1P BS0mST e
2.a  2((9.8m/s)sin32.0°

or |[x|=1.18 m.

(b) The time is
v v, -3.50m/s

[=—=

M . = 0.674s.
a  gsiné (9.8m/s2)sm 32.0°

(c) That the return-speed is identical to the initial speed is to be expected since there are
no dissipative forces in this problem. In order to prove this, one approach is to set x = 0

and solve x =v,t++at’ for the total time (up and back down) ¢. The result is

2(-3.50 m/
po Do 2 ( r‘ns) ~135s.
a gsind (9.8 m/s’)sin 32.0°

The velocity when it returns is therefore

v =v,+at = v,+gtsin 6=—3.50m/s + (9.8 m/s*)(1.35s)sin32°=3.50 my/s.
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36. We label the 40 kg skier “m” which is represented as a block in the figure shown. The
force of the wind is denoted FW and might be either “uphill” or “downhill” (it is shown
uphill in our sketch). The incline angle @1is 10°. The —x direction is downbhill.

(a) Constant velocity implies zero acceleration; thus, application of Newton’s second law
along the x axis leads to

mgsind—F =0.

This yields F,, = 68 N (uphill).

(b) Given our coordinate choice, we have a =| a |= 1.0 m/s”. Newton’s second law
mg sin @ — F = ma

now leads to F), = 28 N (uphill).

(c) Continuing with the forces as shown in our figure, the equation
mg sin 6 — F, = ma

will lead to F,, = — 12 N when | a | = 2.0 m/s>. This simply tells us that the wind is
opposite to the direction shown in our sketch; in other words, F, = 12N downbhill.
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37. The solutions to parts (a) and (b) have been combined
here. The free-body diagram is shown below, with the tension

2}
. |
of the string 7', the force of gravitymg, and the force of the :
air F. Our coordinate system is shown. Since the sphere is :
|
L
|

motionless the net force on it is zero, and the x and the y
components of the equations are:

™|

Tsin @—F=0
Tcos 8—mg=0,

where 6= 37°. We answer the questions in the reverse order. i
Solving T cos 8— mg = 0 for the tension, we obtain

T=mg/ cos 0= (3.0 x 107" kg) (9.8 m/s®) / cos 37°=3.7 x 10 N.
Solving T sin 8— F = 0 for the force of the air:

F=Tsin 8= (3.7x 10> N)sin 37°=2.2x 10 N.
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38. The acceleration of an object (neither pushed nor pulled by any force other than
gravity) on a smooth inclined plane of angle 8 is a = — gsinf. The slope of the graph
shown with the problem statement indicates ¢ = —2.50 m/s’. Therefore, we find
6 =14.8°. Examining the forces perpendicular to the incline (which must sum to zero
since there is no component of acceleration in this direction) we find Fy = mgcos 6, where
m =5.00 kg. Thus, the normal (perpendicular) force exerted at the box/ramp interface is
47.4 N.
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39. The free-body diagram is shown below. Let 7 be the tension of the cable and mg be
the force of gravity. If the upward direction is positive, then Newton’s second law is 7' —

mg = ma, where a is the acceleration.

Thus, the tension is 7= m(g + a). We use constant acceleration kinematics (Table 2-1) to
find the acceleration (where v = 0 is the final velocity, vo = — 12 m/s is the initial velocity,

and y=-42m is the coordinate at the stopping point).

v =v; + 2ay leads to
2 (-12m/s)’
a :_V_O:—ﬂz 1.71m/s>.
2y 2(—42 m)

We now return to calculate the tension:

T

T=m(g + a) 4

= (1600 kg) (98 m/s* + 171 m/s’) .
=18 x 10" N

¥

Fra it
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40. (a) Constant velocity implies zero acceleration, so the “uphill” force must equal (in
magnitude) the “downhill” force: 7= mg sin 6. Thus, with m = 50 kg and 8 =8.0°, the
tension in the rope equals 68 N.

(b) With an uphill acceleration of 0.10 m/s*, Newton’s second law (applied to the x axis)
yields

T —mgsin@=ma = T —(50kg)(9.8m/s’)sin8.0°=(50kg)(0.10 m/s’)

which leads to 7= 73 N.
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41. (a) The mass of the elevator is m = (27800/9.80) = 2837 kg and (with +y upward) the
acceleration is a = +1.22 m/s>. Newton’s second law leads to

T-mg=ma = T=m(g+a)
which yields 7= 3.13 x 10* N for the tension.

(b) The term “deceleration” means the acceleration vector is in the direction opposite to
the velocity vector (which the problem tells us is upward). Thus (with +y upward) the
acceleration is now a =—1.22 m/ sz, so that the tension is

T=m(g+a)=243x10"N.
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42. (a) The term “deceleration” means the acceleration vector is in the direction opposite
to the velocity vector (which the problem tells us is downward). Thus (with +y upward)
the acceleration is a = +2.4 m/s>. Newton’s second law leads to

T
g+a

T'—-mg=ma = m=

which yields m = 7.3 kg for the mass.
(b) Repeating the above computation (now to solve for the tension) with a = +2.4 m/s

will, of course, lead us right back to 7= 89 N. Since the direction of the velocity did not
enter our computation, this is to be expected.
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43. The mass of the bundle is m = (449 N)/(9.80 m/s”) = 45.8 kg and we choose +y
upward.

(a) Newton’s second law, applied to the bundle, leads to

387 N — 449 N

T—-mg=ma = a=
45.8 kg

which yields a = —1.4 m/s* (or |a| = 1.4 m/s?) for the acceleration. The minus sign in the
result indicates the acceleration vector points down. Any downward acceleration of
magnitude greater than this is also acceptable (since that would lead to even smaller
values of tension).

(b) We use Eq. 2-16 (with Ax replaced by Ay =—6.1 m). We assume 1, = 0.

v = 2ahy = \[2(~135 m/s?)(=6.1 m) = 4.1 ms.

For downward accelerations greater than 1.4 m/s?, the speeds at impact will be larger than
4.1 m/s.
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44. With a.. meaning “the acceleration of the coin relative to the elevator” and acg
meaning “the acceleration of the elevator relative to the ground”, we have

Qoo+ deg = Aeg = —8.00 M/S” + Geg = —9.80 m/s’

which leads to ac; = —1.80 m/s’. We have chosen upward as the positive y direction.
Then Newton’s second law (in the “ground” reference frame) yields 7'— m g = m acg, or

T =mg+mae=m(g +ae) = (2000 kg)(8.00 m/s*) = 16.0 kN.
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45. (a) The links are numbered from bottom to top. The forces on the bottom link are the
force of gravity mg , downward, and the force F, , of link 2, upward. Take the positive
direction to be upward. Then Newton’s second law for this link is Fyon — mg = ma. Thus,

Faont = m(a + g) = (0.100 kg) (2.50 m/s* + 9.80 m/s*) = 1.23 N.

(b) The forces on the second link are the force of gravity mg, downward, the force Eonz
of link 1, downward, and the force F,_, of link 3, upward. According to Newton’s third

law F,, has the same magnitude as F, . Newton’s second law for the second link is

lon2 onl *

Fi3on2 — Fion2 — mg = ma, 0o
Faonp =m(a+ g) + Fionz = (0.100 kg) (2.50 m/s> + 9.80 m/sz) +1.23N=246N.
(c) Newton’s second for link 3 is Fagn3 — Faon3 — mg = ma, so

Faons = m(a + g) + Faonz = (0.100 N) (2.50 m/s* + 9.80 m/s”) + 2.46 N =3.69 N,

where Newton’s third law implies Foon3 = F3on2 (since these are magnitudes of the force
vectors).

(d) Newton’s second law for link 4 is Fsona — F3ona — mg = ma, so
Fsons = m(a + g) + Fions = (0.100 kg) (2.50 m/s* + 9.80 m/s®) + 3.69 N=4.92 N,
where Newton’s third law implies Fona = Fion3.
(e) Newton’s second law for the top link is F'— Fions — mg = ma, so
F=m(a+ g)+ Faons = (0.100 kg) (2.50 m/s* + 9.80 m/s*) + 492 N=6.15 N,
where Fions = Fsona by Newton’s third law.

(f) Each link has the same mass and the same acceleration, so the same net force acts on
each of them:

Foe = ma = (0.100 kg) (2.50 m/s?) = 0.250 N.
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46. Applying Newton’s second law to cab B (of mass m) we have a =% — g=4.89 m/s’.

Next, we apply it to the box (of mass m;) to find the normal force:

Fy=mp(g+a)=176 N.
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47. The free-body diagram (not to scale) for the block is shown below. F’N is the normal
force exerted by the floor and mg is the force of gravity.

}r
(a) The x component of Newton’s second law is F' cos@ = ma, ! F
where m is the mass of the block and a is the x component of its |
acceleration. We obtain L 5
.IL.\.-'
120N)cos250° . [TTTTTTTTToTTooS i
a= Fcosé?: ( )COS =218 m/s’.
m 5.00kg

This is its acceleration provided it remains in contact with the
floor. Assuming it does, we find the value of Fy (and if Fy is ¥ iy
positive, then the assumption is true but if Fly is negative then the ’

block leaves the floor). The y component of Newton’s second law becomes

Fy+ Fsinf@—mg=0,
SO
Fy=mg— Fsin@=(5.00 kg)(9.80 m/sz) —(12.0 N)sin25.0°=43.9 N.

Hence the block remains on the floor and its acceleration is @ = 2.18 m/s>.

(b) If F is the minimum force for which the block leaves the floor, then Fy = 0 and the y
component of the acceleration vanishes. The y component of the second law becomes

5.00kg)(9.80 m/s*
Fsind-mg=0 = F=-"% _ ,g)( ):116N.
sin @ sin 25.0°

(c) The acceleration is still in the x direction and is still given by the equation developed
in part (a):

4= Fcos® (116 N) cos 25.0°
m 5.00 kg

=21.0m/s”.
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48. The direction of motion (the direction of the barge’s acceleration) is +1, and +j is

chosen so that the pull , from the horse is in the first quadrant. The components of the
unknown force of the water are denoted simply F, and F).

(a) Newton’s second law applied to the barge, in the x and y directions, leads to

(7900N)cos 18° + F, = ma
(7900N)sin 18° + F, = 0

respectively. Plugging in @ = 0.12 m/s* and m = 9500 kg, we obtain F, = — 6.4 x 10° N
and F, = — 2.4 x 10’ N. The magnitude of the force of the water is therefore

Fow =F + F> =68x10° N.

(b) Its angle measured from +i is either

F
tan™ (ij = +21°0r201°.

X

The signs of the components indicate the latter is correct, so F.__ is at 201° measured

water
counterclockwise from the line of motion (+x axis).
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49. Using Eq. 4-26, the launch speed of the projectile is

=26.52m/s.

Vo =

gR (9.8 m/s*)(69 m)
sin 26 sin 2(53°)

The horizontal and vertical components of the speed are

v, =v,c080 =(26.52 m/s)cos53°=15.96 m/s
v, =V, 8in0 =(26.52 m/s)sin53°=21.18 m/s.

Since the acceleration is constant, we can use Eq. 2-16 to analyze the motion. The
component of the acceleration in the horizontal direction is

v (15.96 m/s)

a, =—*= =40.7 m/s®,
2x  2(5.2 m)cos53°

and the force component is F. =ma, =(85kg)(40.7 m/s*) =3460 N. Similarly, in the
vertical direction, we have
2

2
g =2 = CLIBIS 56,
2y  2(5.2 m)sin53°

and the force component is
F,=ma, +mg =(85kg)(54.0 m/s’ +9.80 m/s*) = 5424 N.

Thus, the magnitude of the force is

F=\[F?+F? =/(3460 N)* +(5424 N)* = 6434 N = 6.4x10’ N,

to two significant figures.
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50. First, we consider all the penguins (1 through 4, counting left to right) as one system,
to which we apply Newton’s second law:

T,= (m+my,+my+m)a = 222N = (12kg + m, +15kg + 20kg)a.
Second, we consider penguins 3 and 4 as one system, for which we have

I,-T, = (m3+m4)a
111N = (15kg+ 20kg)a = a=3.2m/s’.

Substituting the value, we obtain m, = 23 kg.
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51. We apply Newton’s second law first to the three blocks as a single system and then to
the individual blocks. The +x direction is to the right in Fig. 5-49.

(a) With mgys = my + my + m3 = 67.0 kg, we apply Eq. 5-2 to the x motion of the system —
in which case, there is only one force T, = + T, i . Therefore,

I, =mya = 65.0N=(67.0kg)a
which yields @ = 0.970 m/s” for the system (and for each of the blocks individually).
(b) Applying Eq. 5-2 to block 1, we find

T, =ma = (12.0kg)(0.970m/s*) =11.6N.

(c) In order to find 73, we can either analyze the forces on block 3 or we can treat blocks
1 and 2 as a system and examine its forces. We choose the latter.

T, =(m,+m,)a = (12.0kg+24.0kg)(0.970 m/s’) =349 N .
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52. Both situations involve the same applied force and the same total mass, so the
accelerations must be the same in both figures.

(a) The (direct) force causing B to have this acceleration in the first figure is twice as big
as the (direct) force causing A4 to have that acceleration. Therefore, B has the twice the
mass of A. Since their total is given as 12.0 kg then B has a mass of mz = 8.00 kg and 4
has mass m, = 4.00 kg. Considering the first figure, (20.0 N)/(8.00 kg) = 2.50 m/s>. Of
course, tgle same result comes from considering the second figure ((10.0 N)/(4.00 kg) =
2.50 m/s%).

(b) F, = (12.0 kg)(2.50 m/s*) =30.0 N
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53. The free-body diagrams for part (a) are shown below. F is the applied force and f
is the force exerted by block 1 on block 2. We note that F is applied directly to block 1
and that block 2 exerts the force — / on block 1 (taking Newton’s third law into
account).

Fy, Fy

V3

m|§ ¥ mzé_:'.?

(a) Newton’s second law for block 1 is /' — = mja, where a is the acceleration. The
second law for block 2 is f'= mya. Since the blocks move together they have the same
acceleration and the same symbol is used in both equations. From the second equation we
obtain the expression a = f'/m,, which we substitute into the first equation to get F — f'=
myf/m;. Therefore,

fe Fm, _(32N)(12kg) _ .
m +m, 23kg+12kg

(b) If F is applied to block 2 instead of block 1 (and in the opposite direction), the force
of contact between the blocks is

Fm, _ (32N)(23kg)

= = =21IN.
m, +m, 23kg+12kg

(c) We note that the acceleration of the blocks is the same in the two cases. In part (a), the
force fis the only horizontal force on the block of mass m; and in part (b) f'is the only
horizontal force on the block with m; > m,. Since f'= mpa in part (a) and f'= mja in part
(b), then for the accelerations to be the same, f must be larger in part (b).
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54. (a) The net force on the system (of total mass M = 80.0 kg) is the force of gravity
acting on the total overhanging mass (mzc = 50.0 kg). The magnitude of the acceleration
is therefore a = (mpc g)/M = 6.125 m/s>. Next we apply Newton’s second law to block C
itself (choosing down as the +y direction) and obtain

mcg — Tpc = mca.

This leads to 7T5c = 36.8 N.

(b) We use Eq. 2-15 (choosing rightward as the +x direction): Ax =0 + %at2 =0.191 m.
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55. The free-body diagrams for m, and m, are shown in the figures below. The only

forces on the blocks are the upward tension 7 and the downward gravitational forces
F, =m,g and F, =m,g . Applying Newton’s second law, we obtain:

F Y
I'-mg=ma
m,g—T =m,a AT Al
which can be solved to yield Tﬂ' i " AL @ i‘”
F
a=| 2" g —
m, +m, Y i

Substituting the result back, we have

2m,m
T: 17772
2]

(a) With m; =1.3 kgand m, =2.8 kg, the acceleration becomes

a_[2.80kg—1.30kg

(9.80 m/s*)=3.59 m/s".
2.80kg+1.30kg

(b) Similarly, the tension in the cord is

- 20.30kg)(2.80kg)

(9.80m/s*)=17.4 N.
1.30kg+2.80kg
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56. To solve the problem, we note that the acceleration along the slanted path depends on
only the force components along the path, not the components perpendicular to the path.
(a) From the free-body diagram shown, we see that the net force on the putting shot along
the +x-axis is

F. =F—mgsin®=380.0 N—(7.260 kg)(9.80 m/s>)sin 30° = 344.4 N,

net,x
which in turn gives

X net,x

a =F_ /m=(344.4N)/(7.260 kg) = 47.44 ns. ¥

Using Eq. 2-16 for constant-acceleration motion, the speed
of the shot at the end of the acceleration phase is

V=V +2a,Ax = /(2500 m/s)* +2(47.44 m/s*)(1.650 m)
=12.76 m/s.

(b) If 6=42°, then

o _Fue _F-mgsing _380.0 N—(7.260 kg)(9.80 m/s’)sin 42.00°
Toom m 7.260 kg

=45.78 m/s?,

and the final (launch) speed is

V=V +2a,Ax = /(2500 m/s)* +2(45.78 m/s*)(1.650 m) =12.54 m/s.

(c) The decrease in launch speed when changing the angle from 30.00° to 42.00° is

12.76 m/s —12.54 m/s
12.76 m/s

=0.0169=16.9%.
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57. We take +y to be up for both the monkey and the package.

(a) The force the monkey pulls downward on the rope has magnitude F. According to
Newton’s third law, the rope pulls upward on the monkey with a force of the same
magnitude, so Newton’s second law for forces acting on the monkey leads to

F—mug=myapn,

where m,, is the mass of the monkey and a,, is its acceleration. Since the rope is massless
F =T is the tension in the rope. The rope pulls upward on the package with a force of
magnitude F, so Newton’s second law for the package is

F+ Fy—myg = mpay,,

where m, is the mass of the package, a, is its acceleration, and Fy is the normal force
exerted by the ground on it. Now, if F is the minimum force required to lift the package,
then Fy =0 and a, = 0. According to the second law equation for the package, this means
F = myg. Substituting m,g for F in the equation for the monkey, we solve for a,,:

a, = F-mg _ (’”p ‘ mm)g _ (15ke— 10kg)(9’8m/sz) =49 m/s’.
m m 10kg

m m

(b) As discussed, Newton’s second law leads to F'—m,g=m,a, for the package and

F—m,g=m,a, for the monkey. If the acceleration of the package is downward, then
the acceleration of the monkey is upward, so a,, = —a,. Solving the first equation for '

F = mp(g + ap) = mp(g - am)
and substituting this result into the second equation, we solve for a,,:

- 15keg — 10 kg)(9.8 m/s*
a, = L, =m )& _ (ke )l ) = 2.0 m/s’.
m, +m, 15kg + 10kg

(c) The result is positive, indicating that the acceleration of the monkey is upward.

(d) Solving the second law equation for the package, we obtain

F=m,(g-a,)=(15kg)(9.8 m/s* — 2.0 m/s’ )= 120N.
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58. Referring to Fig. 5-10(c) is helpful. In this case, viewing the man-rope-sandbag as a
system means that we should be careful to choose a consistent positive direction of
motion (though there are other ways to proceed — say, starting with individual application
of Newton’s law to each mass). We take down as positive for the man’s motion and up as
positive for the sandbag’s motion and, without ambiguity, denote their acceleration as a.
The net force on the system is the different between the weight of the man and that of the
sandbag. The system mass is mgys = 85 kg + 65 kg = 150 kg. Thus, Eq. 5-1 leads to

(85kg) (9.8 m/s*) —(65 kg) (9.8 m/s?)=m_ a

which yields ¢ = 1.3 m/s. Since the system starts from rest, Eq. 2-16 determines the
speed (after traveling A y = 10 m) as follows:

v=12aAy = /2(1.3 m/s>)(10 m) = 5.1 m/s.
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59. The free-body diagram for each block is shown below. 7 is the tension in the cord and
60 = 30° is the angle of the incline. For block 1, we take the +x direction to be up the
incline and the +y direction to be in the direction of the normal force F, that the plane
exerts on the block. For block 2, we take the +y direction to be down. In this way, the
accelerations of the two blocks can be represented by the same symbol a, without
ambiguity. Applying Newton’s second law to the x and y axes for block 1 and to the y
axis of block 2, we obtain
T—-mgsin @ = ma
Fy,—mgcos 8=0
m,g—T = mya

respectively. The first and third of these equations provide a simultaneous set for
obtaining values of a and 7. The second equation is not needed in this problem, since the
normal force is neither asked for nor is it needed as part of some further computation
(such as can occur in formulas for friction).

(a) We add the first and third equations above:
myg — m g sin 0= ma + ma.
Consequently, we find

(m,—m sin @) g [2.30kg—(3.70 kg)sin 30.0°](9.80 m/s” )
m+m, 3.70 kg + 2.30 kg

=0.735m/s’.

a=

(b) The result for a is positive, indicating that the acceleration of block 1 is indeed up the
incline and that the acceleration of block 2 is vertically down.

(¢) The tension in the cord is

T=ma+mgsin 6=(3.70kg)(0.735 m/s* )+(3.70 kg ) (9.80 m/s’ )sin 30.0° =20.8N.
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60. The motion of the man-and-chair is positive if upward.
(a) When the man is grasping the rope, pulling with a force equal to the tension 7 in the
rope, the total upward force on the man-and-chair due its two contact points with the rope
i1s 2T. Thus, Newton’s second law leads to

2T — mg = ma

so that when a = 0, the tension is 7= 466 N.

(b) When a = +1.30 m/s* the equation in part (a) predicts that the tension will be
T =527 N.

(c) When the man is not holding the rope (instead, the co-worker attached to the ground

is pulling on the rope with a force equal to the tension 7 in it), there is only one contact
point between the rope and the man-and-chair, and Newton’s second law now leads to

T —mg =ma
so that when a = 0, the tension is 7=931 N.
(d) When a = +1.30 m/s’, the equation in (c) yields 7= 1.05 x 10° N.

(e) The rope comes into contact (pulling down in each case) at the left edge and the right
edge of the pulley, producing a total downward force of magnitude 27 on the ceiling.
Thus, in part (a) this gives 27=931 N.

(f) In part (b) the downward force on the ceiling has magnitude 27 = 1.05 x 10° N.
(g) In part (c) the downward force on the ceiling has magnitude 27'=1.86 x 10° N.

(h) In part (d) the downward force on the ceiling has magnitude 27=2.11 x 10> N.
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61. The forces on the balloon are the force of gravity mg (down) and the force of the air

Ij“a (up). We take the +y to be up, and use a to mean the magnitude of the acceleration

(which is not its usual use in this chapter). When the mass is M (before the ballast is
thrown out) the acceleration is downward and Newton’s second law is

F,—Mg=-Ma.

After the ballast is thrown out, the mass is M — m (where m is the mass of the ballast) and
the acceleration is upward. Newton’s second law leads to

F,—(M—-m)g=(M-m)a.
The previous equation gives F, = M(g — a), and this plugs into the new equation to give

2Ma
g+a

M(g—a)—(M—m)gz(M—m)a = m=
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62. The horizontal component of the acceleration is determined by the net horizontal
force.

(a) If the rate of change of the angle is

%: (2.00x102)°/s = (2.00x10—2)°/s-(”8r§fj —3.49%10rad/s,

then, using F, = F'cos@, we find the rate of change of acceleration to be

_Fsinfd6 _ (20.0 N)sin25.0°
m dt 5.00 kg

dr dt
=-5.90x107* m/s>.

da, _d [F"OSHJ (3.49x107* rad’s )

m

(b) If the rate of change of the angle is

=-3.49%10*rad/s,

%z—(ZOOxlO_Z)O/s=—(2.00x10‘2)°/s-(71[ rad}

o

then the rate of change of acceleration would be

da, _i(Fcosﬁj __Fsinfd6 _ (20.0 N)sin25.0°
dt dt m dt 5.00 kg

=+5.90x107" m/s’.

(-3.49%x107*rad/s )
m
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63. The free-body diagrams for m, and m, are shown in the
figures below. The only forces on the blocks are the upward
tension 7 and the downward gravitational forces F, =m,g and g 3

F, =m,g . Applying Newton’s second law, we obtain:

Ta' e AL W
T'-mg=ma 3 :

m,g—T =m,a

a=|——|g
m, +m,
(a) At t=0, m,=130kg. With dm,/dt=-0.200 kg/s, we find the rate of change of
acceleration to be

which can be solved to give

2
da _ da dm _  2m,g dm, :_2(2.80 kg)(9.80 m/s )(_0'200 kg/s) = 0.653 s

dt dm dt  (m,+m,) dt (2.80 kg +1.30 kg)’

(b) At t=3.00s, m, =m,+(dm,/dt)t=1.30kg+(-0.200 kg/s)(3.00s) =0.700 kg, and
the rate of change of acceleration is

2
da  da dm, __ 2m,g  dm, :_2(2.80 kg)(9.80 m/s )(—0.200 kg/s) =0.896 /s

dt dm dt  (m,+m) dt  (2.80kg+0.700 kg)’

(c) The acceleration reaches its maximum value when

0=m, =m,+(dm,/dt)t=130kg+(-0.200 kg/s)t,
or t=6.50s.
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64. We first use Eq. 4-26 to solve for the launch speed of the shot:

gx’

—y, =(tan@)x——=" .
y=¥o=( ) 2(v'cos 8)

With 6=34.10°, y,=2.11m and (x,y)=(15.90 m,0), we find the launch speed to be
v/ =11.85 m/s. During this phase, the acceleration is

VP -y, (11.85m/s)’ —(2.50 m/s)’
2L 2(1.65 m)

a =40.63 m/s>.

Since the acceleration along the slanted path depends on only the force components along
the path, not the components perpendicular to the path, the average force on the shot
during the acceleration phase is

F =m(a+ gsin6) = (7.260 kg)[ 40.63 m/s’ +(9.80 m/s’)sin 34.10° | = 334.8 N.
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65. First we analyze the entire system with “clockwise” motion considered positive (that
is, downward is positive for block C, rightward is positive for block B, and upward is
positive for block A): mcg—m4g = Ma (where M = mass of the system = 24.0 kg). This
yields an acceleration of

a=g(me—my)/M=1.63 m/s’.
Next we analyze the forces just on block C: mcg — T =mc a. Thus the tension is

T=mcg(2my+ mp)/M=81.7 N.
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66. The +x direction for m,=1.0 kg is “downhill” and the +x direction for m;=3.0 kg is
rightward; thus, they accelerate with the same sign.

)

Iy
— —r 1,.\}"
x1,
mg K,
. 4 By smé
BLo cosg

(a) We apply Newton’s second law to the x axis of each box:

m,g sin@ — T = m,a
F+T=ma

Adding the two equations allows us to solve for the acceleration:

m,gsin@+F
a=—"—-
m, +m,

With F=2.3 N and 8 =30°, we have a = 1.8 m/s>. We plug back and find 7= 3.1 N.

(b) We consider the “critical” case where the F has reached the max value, causing the
tension to vanish. The first of the equations in part (a) shows that a = gsin30° in this
case; thus, a = 4.9 m/s”. This implies (along with 7= 0 in the second equation in part (a))
that

F=(3.0kg)(49m/s’)=147N =15 N
in the critical case.
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67. (a) The acceleration (which equals F/m in this problem) is the derivative of the
velocity. Thus, the velocity is the integral of F/m, so we find the “area” in the graph (15
units) and divide by the mass (3) to obtain v — v, = 15/3 = 5. Since v, = 3.0 m/s, then
v=8.0m/s.

(b) Our positive answer in part (a) implies vV points in the +x
direction.
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68. The free-body diagram is shown on the right. Newton’s
second law for the mass m for the x direction leads to

I, — T, — mgsinO@= ma

which gives the difference in the tension in the pull cable:

T, - T, = m(gsin@ + a) = (2800 kg)| (9.8 m/s’)sin35° + 0.81 m/s’ |
=1.8 x10* N.
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69. (a) We quote our answers to many figures — probably more than are truly
“significant.” Here (7682 L)(“1.77 kg/L”) = 13597 kg. The quotation marks around the
1.77 are due to the fact that this was believed (by the flight crew) to be a legitimate
conversion factor (it is not).

(b) The amount they felt should be added was 22300 kg — 13597 kg = 87083 kg, which
they believed to be equivalent to (87083 kg)/(“1.77 kg/L’) =4917 L.

(c) Rounding to 4 figures as instructed, the conversion factor is 1.77 Ib/L — 0.8034 kg/L,
so the amount on board was (7682 L)(0.8034 kg/L) = 6172 kg.

(d) The implication is that what as needed was 22300 kg — 6172 kg = 16128 kg, so the
request should have been for (16128 kg)/(0.8034 kg/L) = 20075 L.

(e) The percentage of the required fuel was

7682 L (on board) + 4917 L (added)
(22300 kg required) /(0.8034 kg/L)

= 45%.
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70. We are only concerned with horizontal forces in this problem (gravity plays no direct
role). Without loss of generality, we take one of the forces along the +x direction and the
other at 80° (measured counterclockwise from the x axis). This calculation is efficiently
implemented on a vector capable calculator in polar mode, as follows (using magnitude-
angle notation, with angles understood to be in degrees):

= -
Foet = 20 £0)+ (35 4£80)=(43 £53) = | Fhet| = 43N .

Therefore, the mass is m = (43 N)/(20 m/s*) = 2.2 kg.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

71. The goal is to arrive at the least magnitude of F_, and as long as the magnitudes of

net >

132 and }7“3 are (in total) less than or equal to ‘131‘ then we should orient them opposite to

the direction of F, (which is the +x direction).

(a) We orient both F, and F, in the —x direction. Then, the magnitude of the net force is
50 — 30 — 20 = 0, resulting in zero acceleration for the tire.

(b) We again orient 132 and 153 in the negative x direction. We obtain an acceleration
along the +x axis with magnitude

K —-F -F 50N-30N-10N
m 12kg

a =083m/s .

(c) In this case, the forces 132 and 133 are collectively strong enough to have y components
(one positive and one negative) which cancel each other and still have enough x

contributions (in the —x direction) to cancel F,. Since ‘132‘ =‘1§3 , we see that the angle

above the —x axis to one of them should equal the angle below the —x axis to the other one
(we denote this angle 6). We require

—50N =F, +F, =—(30N)cos&— (30N)cos&

which leads to
6=cos™ SONT_ 34°
60N
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72. (a) A small segment of the rope has mass and is pulled down by the gravitational
force of the Earth. Equilibrium is reached because neighboring portions of the rope pull
up sufficiently on it. Since tension is a force along the rope, at least one of the
neighboring portions must slope up away from the segment we are considering. Then, the
tension has an upward component which means the rope sags.

(b) The only force acting with a horizontal component is the applied force F. Treating
the block and rope as a single object, we write Newton’s second law for it: F'= (M + m)a,
where a is the acceleration and the positive direction is taken to be to the right. The
acceleration is given by a = F/(M + m).

(c) The force of the rope F; is the only force with a horizontal component acting on the
block. Then Newton’s second law for the block gives

F = Ma= MF
M+ m

where the expression found above for a has been used.

(d) Treating the block and half the rope as a single object, with mass M +1m , where the

horizontal force on it is the tension 7,, at the midpoint of the rope, we use Newton’s
second law:
(M + m/2)F 3 (2M + m)F

(M +m) — 2(M+m)’

T, =(M+lmja=
2
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73. Although the full specification of F., = md in this situation involves both x and y
axes, only the x-application is needed to find what this particular problem asks for. We
note that a, = 0 so that there is no ambiguity denoting a, simply as a. We choose +x to the
right and +y up. We also note that the x component of the rope’s tension (acting on the
crate) is

F.=Fcos@= (450 N) cos 38° =355 N,

and the resistive force (pointing in the —x direction) has magnitude /= 125 N.
(a) Newton’s second law leads to

F —f=ma=a= 3ON-I29N 0.74m/s>.
310 kg

(b) In this case, we use Eq. 5-12 to find the mass: m = W/g = 31.6 kg. Now, Newton’s
second law leads to

T fema = a= 3NN _ Lo s
' 31.6 kg
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74. Since the velocity of the particle does not change, it undergoes no acceleration and
must therefore be subject to zero net force. Therefore,

!
!
|

=F +F, +

_‘
o
w
Il
(e

net

Thus, the third force }73 is given by

!

w2

= —F — F,=—(21 + 3j - 2k)N— (51 + 8j - 2k )N = (31 - 11j + 4k N.

The specific value of the velocity is not used in the computation.
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75. (a) Since the performer’s weight is (52 kg)(9.8 m/s®) = 510 N, the rope breaks.

(b) Setting 7= 425 N in Newton’s second law (with +y upward) leads to

T
I'-mg=ma = a=——g
m

which yields |a| = 1.6 m/s”.
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76. (a) For the 0.50 meter drop in “free-fall”, Eq. 2-16 yields a speed of 3.13 m/s. Using
this as the “initial speed” for the final motion (over 0.02 meter) during which his motion
slows at rate “a”, we find the magnitude of his average acceleration from when his feet
first touch the patio until the moment his body stops moving is a = 245 m/s*.

(b) We apply Newton’s second law: Fgop — mg=ma = Fop=20.4 kN.
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77. We begin by examining a slightly different problem: similar to this figure but without
the string. The motivation is that if (without the string) block A4 is found to accelerate
faster (or exactly as fast) as block B then (returning to the original problem) the tension in
the string is trivially zero. In the absence of the string,

ay :FA/mA =30 II'I/S2

ap = FB/mB =40 II'I/S2
so the trivial case does not occur. We now (with the string) consider the net force on the

system: Ma = F,+ Fp=36 N. Since M = 10 kg (the total mass of the system) we obtain a
=3.6 m/s>. The two forces on block 4 are F, and T (in the same direction), so we have

mya=F,+T = T=24N.
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78. With SI units understood, the net force on the box 1s

E,=(3.0+14c0s30°—11)i+ (145sin30°+ 5.0~ 17)]

which yields F_ = (4.1 N)i — (5.0 N)j .
(a) Newton’s second law applied to the m = 4.0 kg box leads to
F

d=-" =(1.0m/s>)i —(1.3m/s?)].
m

(b) The magnitude of a is a= \/(1.0 m/s)? +(—1.3 rn/sz)2 =1.6 m/s” .

(c) Its angle is tan ' [(~1.3 m/s%)/(1.0 m/s*)] = —50° (that is, 50° measured clockwise from
the rightward axis).
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79. The “certain force” denoted F is assumed to be the net force on the object when it
gives m; an acceleration a; = 12 m/s* and when it gives m, an acceleration a, = 3.3 m/s’.
Thus, we substitute m; = F/a, and m, = F/a, in appropriate places during the following
manipulations.

(a) Now we seek the acceleration a of an object of mass m, — m; when F is the net force
on it. Thus,

Fo F _aa,
m,—m, (Fla,)—(F/a) a —a,

a =

which yields a = 4.6 m/s”.

(b) Similarly for an object of mass m;, + m;:

I F _aa,
m,+m, (F/a,)+F/a) a +a,

which yields a = 2.6 m/s’.
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80. We use the notation g as the acceleration due to gravity near the surface of Callisto, m
as the mass of the landing craft, a as the acceleration of the landing craft, and F as the
rocket thrust. We take down to be the positive direction. Thus, Newton’s second law
takes the form mg — F' = ma. If the thrust is F'; (= 3260 N), then the acceleration is zero,
so mg — F) = 0. If the thrust is F> (= 2200 N), then the acceleration is a> (= 0.39 m/s?), so
mg — F> = ma,.

(a) The first equation gives the weight of the landing craft: mg = F; = 3260 N.
(b) The second equation gives the mass:

L _mg—F _3260N-2200N

=27x%x10° kg .
a, 039 m/s’ 8

(c) The weight divided by the mass gives the acceleration due to gravity:

2= (3260 N)/(2.7 x 10’ kg) = 1.2 m/s”.
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81. From the reading when the elevator was at rest, we know the mass of the object is m
= (65 N)/(9.8 m/s®) = 6.6 kg. We choose +y upward and note there are two forces on the
object: mg downward and 7 upward (in the cord that connects it to the balance; 7 is the
reading on the scale by Newton’s third law).

(a) “Upward at constant speed” means constant velocity, which means no acceleration.
Thus, the situation is just as it was at rest: 7= 65 N.

(b) The term “deceleration” is used when the acceleration vector points in the direction

opposite to the velocity vector. We’re told the velocity is upward, so the acceleration
vector points downward (a = —2.4 m/s%). Newton’s second law gives

T-mg=ma = T=(6.6kg)(9.8m/s’—2.4m/s*)=49 N.
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82. We take +x uphill for the m, = 1.0 kg box and +x rightward for the m;= 3.0 kg box (so
the accelerations of the two boxes have the same magnitude and the same sign). The
uphill force on m; is F and the downhill forces on it are 7 and m,g sin 6, where 6= 37°.
The only horizontal force on m; is the rightward-pointed tension. Applying Newton’s
second law to each box, we find

F—-T-m,g sin 0= m,a
T = ma

which can be added to obtain F' — m,g sin = (m; + my)a. This yields the acceleration

- 12 N — (1.0 kg)(9.8 m/s*)sin 37°
1.0kg+3.0kg

=1.53 m/s’.

Thus, the tension is 7= ma = (3.0 kg)(1.53 m/s*) = 4.6 N.
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83. We apply Eq. 5-12.

(a) The mass is m = W/g = (22 N)/(9.8 m/s”) = 2.2 kg. At a place where g = 4.9 m/s’, the
mass is still 2.2 kg but the gravitational force is F, = mg = (2.2 kg) (4.0 m/s?) =11 N.

(b) As noted, m = 2.2 kg.
(c) At a place where g = 0 the gravitational force is zero.

(d) The mass is still 2.2 kg.
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84. We use W, = mg,, where W), is the weight of an object of mass m on the surface of a
certain planet p, and g, is the acceleration of gravity on that planet.

(a) The weight of the space ranger on Earth is

W, =mg.= (75 kg) (9.8 m/s*) = 7.4 x 10> N.
(b) The weight of the space ranger on Mars is

W, = mgn= (75 kg) (3.7 m/s*) = 2.8 x 10> N.

(c) The weight of the space ranger in interplanetary space is zero, where the effects of
gravity are negligible.

(d) The mass of the space ranger remains the same, m=75 kg, at all the locations.
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85.(a) When F. . = 3F — mg = 0, we have
1 1 2 3
F = Smg = (1400 ke) (98 m/s*) =4.6x10° N

for the force exerted by each bolt on the engine.

(b) The force on each bolt now satisfies 3F — mg = ma, which yields

F= %m(g +a)= %(1400 kg)(9.8 m/s® +2.6 m/s*)= 5.8 x10° N.
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86. We take the down to be the +y direction.

(a) The first diagram (shown below left) is the free-body diagram for the person and
parachute, considered as a single object with a mass of 80 kg + 5.0 kg = 85 kg.

oA FI

mg ¥ v I,

Ij“a is the force of the air on the parachute and mg is the force of gravity. Application of

Newton’s second law produces mg — F,, = ma, where a is the acceleration. Solving for F,
we find

F,=m(g - a)=(85kg)(9.8 m/s’—2.5 m/s’) = 620 N.

(b) The second diagram (above right) is the free-body diagram for the parachute alone.
Ii is the force of the air, m,g is the force of gravity, and F , 18 the force of the person.

Now, Newton’s second law leads to
mpg + F,—F,=mpa.

Solving for F),, we obtain

F,=m,(a-g)+F, =(50kg)(2.5m/s’ ~9.8 m/s* )+ 620N = 580 N.
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87. (a) Intuition readily leads to the conclusion that the heavier block should be the
hanging one, for largest acceleration. The force that “drives” the system into motion is
the weight of the hanging block (gravity acting on the block on the table has no effect on
the dynamics, so long as we ignore friction). Thus, m = 4.0 kg.

The acceleration of the system and the tension in the cord can be readily obtained by
solving
mg—T =ma

T=Ma.

(b) The acceleration is given by

(¢) The tension is
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88. We assume the direction of motion is +x and assume the refrigerator starts from rest
(so that the speed being discussed is the velocity v which results from the process). The

only force along the x axis is the x component of the applied force F .

(a) Since vp = 0, the combination of Eq. 2-11 and Eq. 5-2 leads simply to

Fx:m(z) =y :(Fcosé?[)t
t m

for i = 1 or 2 (where we denote 8 = 0 and & = @ for the two cases). Hence, we see that
the ratio v, over v; is equal to cos 6.

(b) Since vy = 0, the combination of Eq. 2-16 and Eq. 5-2 leads to

2
F=m|2 | = v= 2(M]Ax
: 2Ax m

fori =1 or 2 (again, 6 = 0 and & = @is used for the two cases). In this scenario, we see
that the ratio v, over v; is equal to /cosé .
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89. The mass of the pilot is m = 735/9.8 = 75 kg. Denoting the upward force exerted by
the spaceship (his seat, presumably) on the pilot as F and choosing upward the +y
direction, then Newton’s second law leads to

F =mgu, =ma = F=(75kg)(1.6 m/s’+1.0m/s’)=195 N.
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90. We denote the thrust as 7 and choose +y upward. Newton’s second law leads to

_2.6x10° N

a="""— — _98m/s’=10m/s>.
1.3%10* kg

I'-Mg=Ma =
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91. (a) The bottom cord is only supporting m, = 4.5 kg against gravity, so its tension is
Th=mag = (4.5 kg)(9.8 m/s*) = 44 N.

(b) The top cord is supporting a total mass of m; + my= (3.5 kg + 4.5 kg) = 8.0 kg against
gravity, so the tension there is

T\= (m;+ my)g = (8.0 kg)(9.8 m/s*) = 78 N.

(c¢) In the second picture, the lowest cord supports a mass of ms = 5.5 kg against gravity
and consequently has a tension of 75 = (5.5 kg)(9.8 m/s?) = 54 N.

(d) The top cord, we are told, has tension 75 =199 N which supports a total of (199
N)/(9.80 m/s%) = 20.3 kg, 10.3 kg of which is already accounted for in the figure. Thus,

the unknown mass in the middle must be ms = 20.3 kg — 10.3 kg = 10.0 kg, and the
tension in the cord above it must be enough to support

my+ms=(10.0 kg +5.50 kg) = 15.5 kg,

so Ty = (15.5 kg)(9.80 m/s?) = 152 N. Another way to analyze this is to examine the
forces on mj; one of the downward forces on it is 7.
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92. (a) With SI units understood, the net force is

— A

=F + F, =(3.0N+ (-2.0N))i + (4.0 N+(-6.0N))j

net

which yields £, =(1.0 N)i —(2.0 N)].

(b) The magnitude of F_is F._ = \/(1 .ON)’+(=2.0N)* =2.2 N.

net net

(c) The angle of F_, is

6 =tan™' —2.0N =—63°.
1.0N

(d) The magnitude of a is

a=F

net

/m=(2.2N)/(1.0 kg) =2.2 m/s’.

(e) Since F

net

is equal to @ multiplied by mass m, which is a positive scalar that cannot
affect the direction of the vector it multiplies,a has the same angle as the net force, i.e,
6 =—-63°. In magnitude-angle notation, we may write a = (2.2 m/s’ £ — 63°).
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93. According to Newton’s second law, the magnitude of the force is given by F = ma,
where a is the magnitude of the acceleration of the neutron. We use kinematics (Table 2-
1) to find the acceleration that brings the neutron to rest in a distance d. Assuming the

acceleration is constant, then v* =v; +2ad produces the value of a:

o) —(14x107m/s)
az(v ZdVO): 221.0;()_1?;;) =-98x 10" m/s”.

The magnitude of the force is consequently

F=ma=(1.67x107kg) (9.8 x 107 m/s’) =16 N.
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94. Making separate free-body diagrams for the helicopter and the truck, one finds there

are two forces on the truck ( T upward, caused by the tension, which we’ll think of as that
of a single cable, and mg downward, where m = 4500 kg) and three forces on the

helicopter (7 downward, Fnﬁ upward, and Mg downward, where M = 15000 kg). With
+y upward, then a = +1.4 m/s” for both the helicopter and the truck.

(a) Newton’s law applied to the helicopter and truck separately gives

Fiyy—T - Mg = Ma

T —mg =ma
which we add together to obtain
Fio— (M +m)g =(M + m)a.
From this equation, we find Fjip = 2.2 X 10° N.

(b) From the truck equation 7'— mg = ma we obtain 7= 5.0 x 10* N.
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95. The free-body diagrams is shown on the right.
Note that F, , and F,,  , respectively, and thought

r m,r, ?

of as the y and x components of the force Ij‘m’r T

exerted by the motorcycle on the rider.

(a) Since the net force equals ma, then the
magnitude of the net force on the rider is
(60.0 kg) (3.0 m/s*) = 1.8 x 10> N.

(b) We apply Newton’s second law to the x axis:

F. _ —mgsin @ =ma

m,r,

where m = 60.0 kg, a = 3.0 m/s®, and 6= 10°. Thus, F, ., =282 N Applying it to the y

axis (where there is no acceleration), we have

F _—mgcos@=0

m,r,

which produces £, . = 579 N. Using the Pythagorean theorem, we find

F2 +F! =644 N.

Now, the magnitude of the force exerted on the rider by the motorcycle is the same

magnitude of force exerted by the rider on the motorcycle, so the answer is 6.4 x 10> N,
to two significant figures.
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96. We write the length unit light-month, the distance traveled by light in one month, as
c'month in this solution.

(a) The magnitude of the required acceleration is given by

~Av_ (010)(30x 10° m/s)
“ T At~ (3.0 days) (36400 s/ day)

=12x10*° m/s>.

(b) The acceleration in terms of g is

A 12 x10* m/s* _ D
g & 9.8 m/s’ & £

(c) The force needed is

F =ma =(1.20 x 10° kg)(1.2 x 10° m/s* )= 1.4 x 10° N.

(d) The spaceship will travel a distance d = 0.1 ¢'month during one month. The time it
takes for the spaceship to travel at constant speed for 5.0 light-months is

t = 4 = 50 c-months = 50 months = 4.2 years.

v 0.1c
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97. The coordinate choices are made in the problem statement.
(a) We write the velocity of the armadillo as v = vxi + vyj . Since there is no net force
exerted on it in the x direction, the x component of the velocity of the armadillo is a

constant: v, = 5.0 m/s. In the y direction at # = 3.0 s, we have (using Eq. 2-11 with
Vo, =0)

F 1
v, =V, tat= v0y+(—"} = [%}(30 S) =43 m/s.
) ) " o

Thus, ¥ = (5.0m/s)i + (4.3m/s)] .

(b) We write the position vector of the armadillo as 7 = r, i+ r, 3 . Att=3.0 s we have
ry = (5.0 m/s) (3.0 s) = 15 m and (using Eq. 2-15 with vy, = 0)

F
r=v, iy p YL LN (3.0s)" = 6.4 m.
T Tl m 2(12kg

The position vector at = 3.0 s is therefore

7= (15m)i+ (6.4 m)j.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

98. (a) From Newton’s second law, the magnitude of the maximum force on the
passenger from the floor is given by

F .. —mg=ma where a=a, =2.0 m/s2
we obtain Fy =590 N for m = 50 kg.
(b) The direction is upward.

(c) Again, we use Newton’s second law, the magnitude of the minimum force on the
passenger from the floor is given by

F. —mg=ma where a=a_ =—3.0m/s’.
Now, we obtain Fy= 340 N.

(d) The direction is upward.

(e) Returning to part (a), we use Newton’s third law, and conclude that the force exerted
by the passenger on the floor is |I3PF | =590 N.

(f) The direction is downward.
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99. The +x axis is “uphill” for m; = 3.0 kg and “downhill” for m, = 2.0 kg (so they both
accelerate with the same sign). The x components of the two masses along the x axis are
given by w, =m,gsin6, and w, =m,gsiné,, respectively.

Applying Newton’s second law, we obtain

T—-mgsin6 = ma

m,gsin 6,—-T = m,a

Adding the two equations allows us to solve for the acceleration:

; :[mzsinﬁ2 -m, sinﬁljg

m, +m1

With 8 =30°and 6, =60°, we have a = 0.45 m/s’. This value is plugged back into
either of the two equations to yield the tension 7= 16 N.
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100. (a) In unit vector notation,
ma =(-3.76 N)1+ (1.37N)].
Thus, Newton’s second law leads to

Fr=ma—F =(=626N)i-(3.23N)].

(b) The magnitude of F, is F, = \/(—6.26 N)* +(=3.23 N)* =7.04 N.

(c) Sincelj"2 is in the third quadrant, the angle is

0 =tan"' —3.23N =207°.
—6.26N

counterclockwise from positive direction of x axis (or 153° clockwise from +x).
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101. We first analyze the forces on m;=1.0 kg.

4:1;_; cosf3 ﬂ“\\\

The +x direction is “downhill” (parallel to 7).

With the acceleration (5.5 m/s%) in the positive x direction for m;, then Newton’s second
law, applied to the x axis, becomes

T+mgsinf=m (55m/s’)

But for m,=2.0 kg, using the more familiar vertical y axis (with up as the positive
direction), we have the acceleration in the negative direction:

F+T-m,g=m, (—S.Sm/sz)

where the tension comes in as an upward force (the cord can pull, not push).
(a) From the equation for m,, with F = 6.0 N, we find the tension 7= 2.6 N.

(b) From the equation for m, using the result from part (a), we obtain the angle f=17°.
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102. (a) The word “hovering” is taken to imply that the upward (thrust) force is equal in
magnitude to the downward (gravitational) force: mg = 4.9 x 10° N.

(b) Now the thrust must exceed the answer of part (a) by ma = 10 x 10° N, so the thrust
must be 1.5 x 10° N.
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103. (a) Choosing the direction of motion as +x, Eq. 2-11 gives

4= 88.5km/h — 0
6.0s

=15 km/h/s.

Converting to SI, this is a = 4.1 m/s*.

(b) With mass m = 2000/9.8 = 204 kg, Newton’s second law gives F = md = 836 N in
the +x direction.
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104. (a) With vo = 0, Eq. 2-16 leads to

v (6.0x10° m/s)’

a= =1.2%x10" m/s>.
2Ax 2(0.015 m)

The force responsible for producing this acceleration is

F=ma=(9.11x 10™ kg) (1.2x10" m/s>)=1.1x10"° N.

(b) The weight is mg = 8.9 x 10° N, many orders of magnitude smaller than the result of
part (a). As a result, gravity plays a negligible role in most atomic and subatomic
processes.
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1. We do not consider the possibility that the bureau might tip, and treat this as a purely

horizontal motion problem (with the person’s push F in the +x direction). Applying
Newton’s second law to the x and y axes, we obtain

F _fs,max = ma
0

F, —mg

respectively. The second equation yields the normal force Fy = mg, whereupon the
maximum static friction is found to be (from Eq. 6-1) f, . = 4 mg. Thus, the first

equation becomes
F—umg=ma=0

where we have set @ = 0 to be consistent with the fact that the static friction is still (just
barely) able to prevent the bureau from moving.

(a) With ¢ = 045 and m = 45 kg, the equation above leads to /' = 198 N. To bring the

bureau into a state of motion, the person should push with any force greater than this
value. Rounding to two significant figures, we can therefore say the minimum required
push is F=2.0 x 10> N.

(b) Replacing m = 45 kg with m = 28 kg, the reasoning above leads to roughly
F=1.2x10° N.
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2. To maintain the stone’s motion, a horizontal force (in the +x direction) is needed that
cancels the retarding effect due to kinetic friction. Applying Newton’s second to the x
and y axes, we obtain

F—f, = ma

F,—mg=20

respectively. The second equation yields the normal force Fiy = mg, so that (using Eq. 6-2)
the kinetic friction becomes f; = 14 mg. Thus, the first equation becomes

F—umg=ma=0

where we have set a = 0 to be consistent with the idea that the horizontal velocity of the
stone should remain constant. With m =20 kg and g = 0.80, we find F'=1.6 X 10* N.
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3. We denote F as the horizontal force of the person exerted on the crate (in the +x
direction), f, is the force of kinetic friction (in the —x direction), F, is the vertical
normal force exerted by the floor (in the +y direction), and mg is the force of gravity.

The magnitude of the force of friction is given by f; = tuf'v (Eq. 6-2). Applying Newton’s
second law to the x and y axes, we obtain

F—f, =ma
F,—mg=20

respectively.

(a) The second equation yields the normal force Fy= mg, so that the friction is
S = s,mg =(0.35)(55 kg) (9.8 m/s*)=1.9%x10* N .

(b) The first equation becomes
F — u,mg =ma

which (with =220 N) we solve to find

azz—,ukg=056m/sz.
m
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4. The free-body diagram for the player is shown next. I:“N is the
normal force of the ground on the player, mg is the force of gravity,
and f is the force of friction. The force of friction is related to the
normal force by f'= (Fy. We use Newton’s second law applied to

the vertical axis to find the normal force. The vertical component of &

the acceleration is zero, so we obtain Fy — mg = 0; thus, Fy = mg.
Consequently,

/ 470N
MR T (19ke) (9.8 m/s?)

www., Mohandesyar . com

—

f

. mig


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

5. The greatest deceleration (of magnitude a) is provided by the maximum friction force
(Eq. 6-1, with Fy = mg in this case). Using Newton’s second law, we find

a = fomax /M = [g.

Eq. 2-16 then gives the shortest distance to stop: |Ax| = v*/2a = 36 m. In this calculation,
it is important to first convert v to 13 m/s.
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6. We first analyze the forces on the pig of mass m. The incline angle is 6.

£/

/' myg cos ¢

The +x direction is “downhill.”’
Application of Newton’s second law to the x- and y-axes leads to

mgsin 6 — f, = ma

F, —mgcos 6 =0.

Solving these along with Eq. 6-2 (fy = tF'n) produces the following result for the pig’s
downhill acceleration:

a=g(sin6—u, cosf) .
To compute the time to slide from rest through a downhill distance ¢, we use Eq. 2-15:

E:vot+lat2 = t= %
2 a

We denote the frictionless (1 = 0) case with a prime and set up a ratio:

13 N20/a ’

" N20/a’

which leads us to conclude that if #/¢' = 2 then a' = 4a. Putting in what we found out
above about the accelerations, we have

a
a

gsinf@=4g (sin@—, cosb) .

Using 8= 35°, we obtain 4 = 0.53.
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7. We choose +x horizontally rightwards and +y upwards and observe that the 15 N force
has components F, = F' cos fand F,, = — F sin 6.

(a) We apply Newton’s second law to the y axis:

F,—Fsin@-mg=0 = F, =(15N)sin 40°+(3.5kg)(9.8 m/s*) = 44 N.
With g = 0.25, Eq. 6-2 leads to f; = 11 N.
(b) We apply Newton’s second law to the x axis:

(15N)cos 40° — 11N
3.5kg

=0.14 m/s’.

Fcos O0—f, =ma = a=

Since the result is positive-valued, then the block is accelerating in the +x (rightward)
direction.
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8. In addition to the forces already shown in Fig. 6-21, a free-body diagram would
include an upward normal force FN exerted by the floor on the block, a downward mg

representing the gravitational pull exerted by Earth, and an assumed-leftward f for the

kinetic or static friction. We choose +x rightwards and +y upwards. We apply Newton’s

second law to these axes:
F—f=ma
P+F,-mg=0

where F'=6.0 N and m = 2.5 kg is the mass of the block.
(a) In this case, P = 8.0 N leads to
Fy=(2.5kg)(9.8 m/s’) —8.0N=16.5N.

Using Eq. 6-1, this implies f

s, max

=u F, =66 N, which is larger than the 6.0 N

rightward force — so the block (which was initially at rest) does not move. Putting a = 0
into the first of our equations above yields a static friction force of f=P = 6.0 N.

(b) In this case, P = 10 N, the normal force is Fiy = (2.5 kg)(9.8 m/s”) — 10 N = 14.5 N.
Using Eq. 6-1, this implies f, = u F, =5.8 N, which is less than the 6.0 N rightward

force — so the block does move. Hence, we are dealing not with static but with kinetic
friction, which Eq. 6-2 revealstobe f, =y, F,, =3.6 N.

(c) In this last case, P = 12 N leads to Fy = 12.5 N and thus to f

s,max

=uF,=50N,
which (as expected) is less than the 6.0 N rightward force — so the block moves. The
kinetic friction force, then, is f, =4, F,, =3.1N.
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9. Applying Newton’s second law to the horizontal motion, we have F — 4 m g = ma,
where we have used Eq. 6-2, assuming that Fy = mg (which is equivalent to assuming
that the vertical force from the broom is negligible). Eq. 2-16 relates the distance traveled
and the final speed to the acceleration: v’ = 2aAx. This gives a = 1.4 m/s”. Returning to
the force equation, we find (with /=25 N and m = 3.5 kg) that 44 = 0.58.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

10. There is no acceleration, so the (upward) static friction forces (there are four of them,
one for each thumb and one for each set of opposing fingers) equals the magnitude of the
(downward) pull of gravity. Using Eq. 6-1, we have

du F,=mg=(79kg)(9.8 m/s*)

which, with s = 0.70, yields Fy=2.8 x 10> N.
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11. We denote the magnitude of 110 N force exerted by the worker on the crate as F. The
magnitude of the static frictional force can vary between zero and f, .. =4 F) .

(a) In this case, application of Newton’s second law in the vertical direction yields
F, =mg . Thus,

fo e = M Fy = 1mg =(0.37)(35kg)(9.8m/s’) =1.3x10° N

which is greater than F.

(b) The block, which is initially at rest, stays at rest since F' < f; max- Thus, it does not
move.

(c) By applying Newton’s second law to the horizontal direction, that the magnitude of
the frictional force exerted on the crate is £, =1.1x10” N.

(d) Denoting the upward force exerted by the second worker as F», then application of
Newton’s second law in the vertical direction yields Fy= mg — F», which leads to

f;,max = ﬂsFN = /’ls (mg _F;) .

In order to move the crate, /' must satisfy the condition F'> f; max = s (mg — F?)

or
110N > (0.37)[ (35kg)(9.8m/s”)— F, |.

The minimum value of F, that satisfies this inequality is a value slightly bigger than
45.7 N, so we express our answer as F»_ min = 46 N.

(e) In this final case, moving the crate requires a greater horizontal push from the worker
than static friction (as computed in part (a)) can resist. Thus, Newton’s law in the

horizontal direction leads to

F+F >f .« = 10N+F >1269N

which leads (after appropriate rounding) to £ min = 17 N.
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12. (a) Using the result obtained in Sample Problem 6-2, the maximum angle for which
static friction applies is

0. =tan' u =tan' 0.63 = 32°.

This is greater than the dip angle in the problem, so the block does not slide.

(b) We analyze forces in a manner similar to that shown in Sample Problem 6-3, but with
the addition of a downhill force F.

F+mgsin 0—f =ma =0

§, max

F,, —mgcos 8 = 0.

Along with Eq. 6-1 (f;, max = tFn) we have enough information to solve for F. With
0 =24°and m = 1.8 x 10" kg, we find

F=mg(p, cos@—sin#)=3.0x10" N.
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13. (a) The free-body diagram for the crate is shown on
the right. T is the tension force of the rope on the crate,
13,\, is the normal force of the floor on the crate, mg is the

force of gravity, and f is the force of friction. We take
the +x direction to be horizontal to the right and the +y
direction to be up. We assume the crate is motionless. The
equations for the x and the y components of the force
according to Newton’s second law are:

Tcos —f=0
T'sin@+F,—-mg=0 Y

my

where 8= 15° is the angle between the rope and the horizontal. The first equation gives f
= T cos @ and the second gives Fiy = mg — T sin 6. If the crate is to remain at rest, f must
be less than y F, or T cos €< i, (mg — T sind). When the tension force is sufficient to
just start the crate moving, we must have

T cos 0= 1 (mg — T sin 6).
We solve for the tension:

0.50) (68 kg) (9.8 m/s*
L - — (0:50) (68 ke) ( : ) 304 N = 3.0x10° N.
cos @+ u, sin 6 cos 15° + 0.50 sin 15°

(b) The second law equations for the moving crate are

T cos —f=ma
Fy+ Tsin 6—mg=0.

Now f =wFy, and the second equation gives Fy = mg — Tsinf, which yields
f =u,(mg—Tsinf). This expression is substituted for f'in the first equation to obtain

T cos 0— i (mg — T sin 6) = ma,

so the acceleration is

T (cos 6+ 4, sin 6)

a= —H 8-
m

Numerically, it is given by

o= B% N)(Cosg k+ 035sin 15) _ (035)(98 m/s) = 13 m/s’.
g
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14. (a) The free-body diagram for the block is shown on the
right, with F being the force applied to the block, FN the
normal force of the floor on the block, mg the force of gravity,

and f the force of friction. We take the +x direction to be

horizontal to the right and the +y direction to be up. The
equations for the x and the y components of the force according
to Newton’s second law are:

F =Fcos@— f=ma
F,=Fsin0+F,-mg=0 Ymg_{'

Now f =wFy, and the second equation gives Fy = mg — Fsinf, which yields
f =u,(mg—Fsin@). This expression is substituted for f'in the first equation to obtain

F cos 60— . (mg — F sin 6) = ma,
so the acceleration is

a= E(cos O+, sin 0)— 1, g.
m

(a) If #, =0.600 and g, =0.500, then the magnitude of f has a maximum value of
Somax = My =(0.600)(mg —0.500mg sin 20°) = 0.497mg.

On the other hand, F cos@ =0.500mg cos20° =0.470mg. Therefore, Fcos@< f __ and

§,max

the block remains stationary with a =0.
(b) If 1, =0.400 and x4, =0.300, then the magnitude of f has a maximum value of
Somax = M Fy =(0.400)(mg —0.500mg sin 20°) = 0.332mg.

In this case, F'cos@ =0.500mg cos20°=0.470mg > f.

.max- Lherefore, the acceleration of
the block is

a zﬂ(cos O+, sin 0) — u,. g
m

= (0.500)(9.80 m/s*)[cos 20°+(0.300) sin 20°] - (0.300)(9.80 m/s*)
=2.17 m/s’.
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15. An excellent discussion and equation development related to this problem is given in
Sample Problem 6-2. We merely quote (and apply) their main result:

0 =tan' u =tan"'0.04 = 2°.
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16. (a) We apply Newton’s second law to the “downhill” direction:
mgsinf— f= ma,

where, using Eq. 6-11,
S=Ji= N = trmgcoso.

Thus, with 1 = 0.600, we have
a=gsin@— wcosf=—-3.72 m/s*
which means, since we have chosen the positive direction in the direction of motion

(down the slope) then the acceleration vector points “uphill”; it is decelerating. With
v, =18.0 m/s and Ax = d = 24.0 m, Eq. 2-16 leads to

v=4lvi +2ad =12.1 m/s.

(b) In this case, we find @ = +1.1 m/s?, and the speed (when impact occurs) is 19.4 m/s.
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17. (a) The free-body diagram for the block is shown below. F is A

“y

the applied force, FN is the normal force of the wall on the block,

f is the force of friction, and mg is the force of gravity. To
determine if the block falls, we find the magnitude f of the force {-.
of friction required to hold it without accelerating and also find =& »
the normal force of the wall on the block. We compare fand z4,Fx.
If /< u,Fy, the block does not slide on the wall but if /> g Fy, the
block does slide. The horizontal component of Newton’s second
law is F—Fy=0, so Fy=F =12 N and

L B!

Y mg
1Fy=(0.60)(12 N) = 7.2 N.

The vertical component is f—mg =0, so f=mg = 5.0 N. Since f < uFy the block does not
slide.

(b) Since the block does not move /= 5.0 N and Fy = 12 N. The force of the wall on the
block is

— A

F =—Fyi+fj=—(12N)i+(5.0N)]

where the axes are as shown on Fig. 6-26 of the text.
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18. We find the acceleration from the slope of the graph (recall Eq. 2-11): a = 4.5 m/s”.
Thus, Newton’s second law leads to

F— tymg = ma,

where F'=40.0 N is the constant horizontal force applied. With m = 4.1 kg, we arrive at
M =0.54.
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19. Fig. 6-4 in the textbook shows a similar situation (using ¢ for the unknown angle)
along with a free-body diagram. We use the same coordinate system as in that figure.

(a) Thus, Newton’s second law leads to

X: Tcos¢p— f=ma
y: Tsing+F, —-mg=0

Setting @ = 0 and f = fimax = K:Fn, we solve for the mass of the box-and-sand (as a

function of angle):
m= Z(sin¢)+ cos¢j
g M

which we will solve with calculus techniques (to find the angle ¢  corresponding to the
maximum mass that can be pulled).

d_m=Z(COS¢m ~ smmj: 0
g A,

This leads to tan ¢, = ¢, which (for ¢, =0.35) yields ¢, =19°.

(b) Plugging our value for ¢  into the equation we found for the mass of the box-and-
sand yields m = 340 kg. This corresponds to a weight of mg = 3.3 x 10° N.
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20. (a) In this situation, we take fs to point uphill and to be equal to its maximum value,
in which case f; max = 4 F), applies, where 1, = 0.25. Applying Newton’s second law to
the block of mass m = W/g = 8.2 kg, in the x and y directions, produces

F

min 1

—mgsin@+f  =ma=0

F, —mgcos 8=0
which (with 8= 20°) leads to

F

min1 — Mg (sin @+ 44, cos #)=8.6 N.
(b) Now we take fs to point downhill and to be equal to its maximum value, in which

case f; max = UFy applies, where 1 = 0.25. Applying Newton’s second law to the block
of mass m = W/g = 8.2 kg, in the x and y directions, produces

F

min 2

=mgsin 0—f =ma=0

s, max

Fy,—mgcos 8= 0
which (with 8= 20°) leads to

F

min 2

=mg (sin O+, cos ) = 46 N.

A value slightly larger than the “exact” result of this calculation is required to make it
accelerate uphill, but since we quote our results here to two significant figures, 46 N is a
“good enough” answer.

(c) Finally, we are dealing with kinetic friction (pointing downhill), so that

0=F-mgsin@-f =ma
0=F, —mgcos@

along with f; = (Fy (where 4 = 0.15) brings us to

F =mg (sin @ + u, cos 6) =39 N .
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21. If the block is sliding then we compute the kinetic friction from Eq. 6-2; if it is not
sliding, then we determine the extent of static friction from applying Newton’s law, with
zero acceleration, to the x axis (which is parallel to the incline surface). The question of
whether or not it is sliding is therefore crucial, and depends on the maximum static
friction force, as calculated from Eq. 6-1. The forces are resolved in the incline plane
coordinate system in Figure 6-5 in the textbook. The acceleration, if there is any, is along
the x axis, and we are taking uphill as +x. The net force along the y axis, then, is certainly
zero, which provides the following relationship:

Zﬁy:O = F, = Wcos 8

where W = mg = 45 N is the weight of the block, and 8= 15° is the incline angle. Thus,
Fx=43.5 N, which implies that the maximum static friction force should be

Somax = (0.50) (43.5N)=21.7 N.
(a) For P = (5.0 N)f , Newton’s second law, applied to the x axis becomes
f—|P |-mgsin@=ma.
Here we are assuming f is pointing uphill, as shown in Figure 6-5, and if it turns out that

it points downhill (which is a possibility), then the result for f; will be negative. If f = f;
then a = 0, we obtain

fs=|P|+mgsinf=5.0 N+ (43.5 N)sin15° =17 N,

orfs =17 N)i . This is clearly allowed since £, is less than f; max.

(b) For P = (-8.0 N)f, we obtain (from the same equation) ]75 =(20 N)f , which is still
allowed since it is less than f; max.

(c) But for P = (15 N)i , we obtain (from the same equation) f; = 27 N, which is not
allowed since it is larger than f; max. Thus, we conclude that it is the kinetic friction

instead of the static friction that is relevant in this case. The result is

f. = u,Fyi=(0.34)(43.5N)i=(15N)i.
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22. Treating the two boxes as a single system of total mass mc + my=1.0 + 3.0 = 4.0 kg,
subject to a total (leftward) friction of magnitude 2.0 N + 4.0 N = 6.0 N, we apply
Newton’s second law (with +x rightward):

F—fia=m.,, a = 120N-6.0N=(4.0kg)a

which yields the acceleration a = 1.5 m/s*>. We have treated F as if it were known to the
nearest tenth of a Newton so that our acceleration is “good” to two significant figures.
Turning our attention to the larger box (the Wheaties box of mass mw = 3.0 kg) we apply
Newton’s second law to find the contact force F’ exerted by the Cheerios box on it.

F'—fy=mya = F -40N=(3.0kg)(1.5m/s%).

From the above equation, we find the contact force to be F'= 8.5 N.
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23. The free-body diagrams for block B and for the knot just above block 4 are shown
next. f} is the tension force of the rope pulling on block B or pulling on the knot (as the
case may be), TZ is the tension force exerted by the second rope (at angle 8= 30°) on the
knot, f is the force of static friction exerted by the horizontal surface on block B, FN is
normal force exerted by the surface on block B, W, is the weight of block 4 (W is the
magnitude of m,g), and Wp is the weight of block B (Wz = 711 N is the magnitude of
myg ).

Ay,

Y_"-}_'_

2
-l 0

Y muT

For each object we take +x horizontally rightward and +y upward. Applying Newton’s
second law in the x and y directions for block B and then doing the same for the knot
results in four equations:

TI _f;‘,max = 0
Fy—W, =0
T,cos0-T7,=0

T, sin 6— W, = 0

where we assume the static friction to be at its maximum value (permitting us to use Eq.
6-1). Solving these equations with z = 0.25, we obtain W, =103 N=1.0x10" N.
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24. The free-body diagram for the block is shown below, with F being the force applied
to the block, 13,\, the normal force of the floor on the block, mg the force of gravity, and

f the force of friction. We take the +x direction to be horizontal to the right and the +y

direction to be up. The equations for the x and the y .
components of the force according to Newton’s second A Fy
law are:
F =Fcos@—f=ma
F,=F,—-Fsin6-mg=0

Now f =uF'n, and the second equation gives Fy = mg 4_‘\J{}\‘
\/ o

+ Fsin@, which yields

f=u,(mg+Fsinf). me

This expression is substituted for f'in the first equation to obtain

F cos 60— 1 (mg + F sin 6) = ma,
so the acceleration is

a =£(cos6’—,uk sinf)— g .
m

From Fig. 6-32, we see that a =3.0 m/s* when g, = 0. This implies

3.0m/s? = Ecos 6.
m

We also find a =0 when g, =0.20:

0 zﬂ(cos 60— (0.20) sin 8)— (0.20)(9.8 m/s*) =3.00 m/s’ —0.20£sin 6—1.96 m/s’
m m

=1.04 m/s? —O.ZOESin 6
m

which yields 5.2 m/s* = Esin 6. Combining the two results, we get
m

2
tan@z(s'zm/s ]:1.73 = 6=60°.

3.0 m/s*
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25. Let the tensions on the strings connecting m, and m3 be 7»3, and that connecting m,
and m; be T1,, respectively. Applying Newton’s second law (and Eq. 6-2, with Fyy = myg
in this case) to the system we have
mg —T,; =mya
Ty —pymyg —T;, =mya
T, —mg=ma

Adding up the three equations and using m, = M,m, =m, =2M , we obtain
2Mg — 2 Mg — Mg = SMa .

With a = 0.500 m/s” this yields 4 = 0.372. Thus, the coefficient of kinetic friction is
roughly = 0.37.
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26. The free-body diagram for the sled is shown on the
right, with ' being the force applied to the sled, F, the
normal force of the inclined plane on the sled, mg the

force of gravity, and f the force of friction. We take the \/ﬂ
+x direction to be along the inclined plane and the +y
direction to be in its normal direction. The equations for

the x and the y components of the force according to
Newton’s second law are:

F =F-f-mgsin@=ma=0
F,=F,—-mgcosf=0

Now f'=uFy, and the second equation gives Fiy = mgcos@, which yields f = umgcosé.
This expression is substituted for f'in the first equation to obtain

F=mg(sin@+ ucosb)

From Fig. 6-34, we see that F =2.0 N when £ =0 . This implies mgsind=2.0 N.
Similarly, we also find F'=5.0 N when 4 =0.5:

5.0 N=mg(sin@+0.50cos @) =2.0 N+0.50mg cos 8

which yields mg cos@ = 6.0 N. Combining the two results, we get

tan@ = = 6=18°.

NN
W | =
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27. The free-body diagrams for the two blocks are shown next. 7' is the magnitude of the
tension force of the string, FN ,1s the normal force on block A4 (the leading block), ﬁNB is

the normal force on block B, f , 1s kinetic friction force on block 4, f » 18 kinetic friction
force on block B. Also, m is the mass of block 4 (where m4 = W4/g and W, = 3.6 N), and
mp 1s the mass of block B (where mz = Wg/g and Wy = 7.2 N). The angle of the incline is
6=30°.

-
g

e

For each block we take +x downhill (which is toward the lower-left in these diagrams)
and +y in the direction of the normal force. Applying Newton’s second law to the x and y
directions of both blocks 4 and B, we arrive at four equations:

W,sim@—f,—-T=m, a
F,,—W,cos8=0
Wysin@—f,+T =m, a
F,—Wycos8=0

which, when combined with Eq. 6-2 ( f, =y F,,,where 4 = 0.10 and f, = 1, . F, /5

where 1 p = 0.20), fully describe the dynamics of the system so long as the blocks have
the same acceleration and 7> 0.

(a) From these equations, we find the acceleration to be

a=g[sin9—['u’”‘WA +’ukBWBjcos(9]=3.5 m/s’.

wW,+W,

(b) We solve the above equations for the tension and obtain

w W,
T = 4B — cos@=0.21N.
(WﬁWJ (5 — M)

Simply returning the value for a found in part (a) into one of the above equations is
certainly fine, and probably easier than solving for 7 algebraically as we have done, but
the algebraic form does illustrate the i 5 — 1 4 factor which aids in the understanding of
the next part.
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28. (a) Applying Newton’s second law to the system (of total mass M = 60.0 kg) and
using Eq. 6-2 (with Fy = Mg in this case) we obtain

F— Mg =Ma = a=0.473 m/s’.
Next, we examine the forces just on m; and find F3, = ms(a + wg) = 147 N. If the
algebra steps are done more systematically, one ends up with the interesting relationship:

F,, =(m,/ M)F (which is independent of the friction!).

(b) As remarked at the end of our solution to part (a), the result does not depend on the
frictional parameters. The answer here is the same as in part (a).
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29. First, we check to see if the bodies start to move. We assume they remain at rest and
compute the force of (static) friction which holds them there, and compare its magnitude
with the maximum value g Fy. The free-body diagrams are shown below. T is the
magnitude of the tension force of the string, f'is the magnitude of the force of friction on
body A4, Fi is the magnitude of the normal force of the plane on body 4, m g is the force

of gravity on body 4 (with magnitude W, = 102 N), and m,g is the force of gravity on
body B (with magnitude W5 = 32 N). 8 = 40° is the angle of incline. We are told the
direction of / but we assume it is downhill. If we obtain a negative result for £, then we
know the force is actually up the plane.

o 7 T A
A ne
Lt
™
g "~
\‘-.
gy meg ¥

(a) For 4 we take the +x to be uphill and +y to be in the direction of the normal force. The
x and y components of Newton’s second law become

T—f-W,sin@=0
F,—W,cos8=0.

Taking the positive direction to be downward for body B, Newton’s second law leads to
W, — T = 0. Solving these three equations leads to

f=W,—W, sin@ =32 N-(102 N)sin40°= -34 N
(indicating that the force of friction is uphill) and to
F, =W, cos 8= (102 N) cos 40° = 78N

which means that
fomax = sFn=(0.56) (78 N) =44 N.

Since the magnitude f of the force of friction that holds the bodies motionless is less than
fs.max the bodies remain at rest. The acceleration is zero.
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(b) Since 4 is moving up the incline, the force of friction is downhill with
magnitude f, = i, F,,. Newton’s second law, using the same coordinates as in part (a),

leads to
T—f —W,sin@=m,a
F,—W,cos8=0
W,—T=mua

for the two bodies. We solve for the acceleration:

Wy—W,sin 0—u,W, cos @ 32N —(IOZN)Sin 40° — (0.25)(102N)COS 40°
my +m, (32N+102N) /(9.8 m/s?)

a =
= -39 m/sz.

The acceleration is down the plane, i.e., a =(-3.9 m/sz)i, which is to say (since the

initial velocity was uphill) that the objects are slowing down. We note that m = W/g has
been used to calculate the masses in the calculation above.

(c) Now body 4 is initially moving down the plane, so the force of friction is uphill with
magnitude f, =, F), . The force equations become

T+f,—W,sin @=m,a
F,—W,cos8=20
Wy—T=mza

which we solve to obtain

W, — W, sin 0+ u,W,cos & 32N — (102N)sin 40° + (0.25)(102N)cos 40°

a =
my+m, (32N+102N) / (9.8 m/s)

= -1.0m/s”.

The acceleration is again downhill the plane, i.e., a =(—1.0 m/sz){. In this case, the
objects are speeding up.
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30. The free-body diagrams are shown below. T is the magnitude of the tension force of
the string, f'is the magnitude of the force of friction on block 4, Fy is the magnitude of
the normal force of the plane on block 4, m,g is the force of gravity on body 4 (where
my = 10 kg), and m,g is the force of gravity on block B. &= 30° is the angle of incline.
For 4 we take the +x to be uphill and +y to be in the direction of the normal force; the
positive direction is chosen downward for block B.

Fo T 7 A

51

HIHEV

Since 4 is moving down the incline, the force of friction is uphill with magnitude f; =
L Fy (where 1 = 0.20). Newton’s second law leads to

T—f, +m,gsinf =m,a=0
F,—m,gcos@=0

myg—T =mza=0

for the two bodies (where a = 0 is a consequence of the velocity being constant). We
solve these for the mass of block B.

my=m, (sin@—u, cos@)=3.3 kg.
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31. (a) Free-body diagrams for the blocks 4 and C, considered as a single object, and for
the block B are shown below. T is the magnitude of the tension force of the rope, Fy is
the magnitude of the normal force of the table on block 4, f'is the magnitude of the force

of friction, Wc is the combined weight of blocks 4 and C (the magnitude of force F e AC
shown in the figure), and W3 is the weight of block B (the magnitude of force Fg 5

shown). Assume the blocks are not moving. For the blocks on the table we take the x axis
to be to the right and the y axis to be upward. From Newton’s second law, we have

X component: T-f=0

y component: Fy— Wyc=0.

For block B take the downward direction to be positive. Then Newton’s second law for
that block is W — T'= 0. The third equation gives 7'= Wj and the first gives f= T = Wj.
The second equation gives Fyy = Wc. If sliding is not to occur, f must be less than g Fy,
or Wg < ts Wyc. The smallest that W,c can be with the blocks still at rest is

Wac= Walus = (22 N)/(0.20) = 110 N,

Since the weight of block A4 is 44 N, the least weight for Cis (110 —44) N = 66 N.

: AT
AF,
r T
{ } .
£
v .l!_‘:_.jf_‘ >
’ Y £ s
(b) The second law equations become
T—f=(Wiga
F N— WA =0

WB —-T= (WB/g)a

In addition, /= 14Fy. The second equation gives Fy = Wy, so f= tuW4. The third gives T
= Wp — (Ws/g)a. Substituting these two expressions into the first equation, we obtain

WB — (WB/g)a — ,UkWA = (WA/g)a
Therefore,
_g(Wy —w,) (98 m/s*)(22N —(0.15)(44 N))

a= :2.3m/S2.
W, + W, 44N + 22 N
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32. We use the familiar horizontal and vertical axes for x and y directions, with rightward
and upward positive, respectively. The rope is assumed massless so that the force exerted

by the child F is identical to the tension uniformly through the rope. The x and y

components of F are Fcosd and Fsiné, respectively. The static friction force points
leftward.

(a) Newton’s Law applied to the y-axis, where there is presumed to be no acceleration,
leads to
F,+Fsinf-mg=0

which implies that the maximum static friction is g(mg — F sin ). If f; = f; max 1S
assumed, then Newton’s second law applied to the x axis (which also has @ = 0 even
though it is “verging” on moving) yields

Fcos@— f,=ma = Fcos 8—u (mg—Fsin@) = 0

which we solve, for 8= 42° and y; = 0.42, to obtain F'= 74 N.

(b) Solving the above equation algebraically for F, with W denoting the weight, we obtain

uWw _ (0.42)(180N) 76 N

F = = = .
cos@+usinf cos@+(0.42) sinf cosf+(0.42) sind

(c) We minimize the above expression for F' by working through the condition:

dF _ uW(sinf—pucosd) 0
d@  (cos@+u, sin )

which leads to the result = tan ' L =23°.

(d) Plugging 6= 23° into the above result for F, with 1 = 0.42 and W = 180 N, yields
F=T70N.
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33. The free-body diagrams for the two blocks, treated individually, are shown below
(first m and then M). F" is the contact force between the two blocks, and the static friction

force ]i is at its maximum value (so Eq. 6-1 leads to f; = f; max = fF' where 1, = 0.38).

Treating the two blocks together as a single system (sliding across a frictionless floor),
we apply Newton’s second law (with +x rightward) to find an expression for the
acceleration:

F=m

totala :a:m+M

Ymg ¥ Mg

This is equivalent to having analyzed the two blocks individually and then combined
their equations. Now, when we analyze the small block individually, we apply Newton’s
second law to the x and y axes, substitute in the above expression for a, and use Eq. 6-1.

F-F'=ma = F‘=F—m( il j
m+M

f.—-mg=0 = uF'-mg=0

These expressions are combined (to eliminate F') and we arrive at

which we find to be F=4.9 x 10° N.
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34. The free-body diagrams for the slab and block are shown below.

pE Ao
. F 7
-9 :lab [yl
IF‘X'& \ X1
ma g

F is the 100 N force applied to the block, F,, is the normal force of the floor on the slab,

F,, 1s the magnitude of the normal force between the slab and the block, f is the force

of friction between the slab and the block, m; is the mass of the slab, and m; is the mass
of the block. For both objects, we take the +x direction to be to the right and the +y
direction to be up.

Applying Newton’s second law for the x and y axes for (first) the slab and (second) the
block results in four equations:

_f:mSaS
FNS_FNS_mSgZO

f—F =mya,
Fy,—mg =0

from which we note that the maximum possible static friction magnitude would be
U Fy, = um,g =(0.60)(10 kg)(9.8 m/s*) =59 N .

We check to see if the block slides on the slab. Assuming it does not, then a, = a, (which
we denote simply as a) and we solve for f:

mF (40 kg)(100 N)
m_+m,  40kg+10kg

=80 N

which is greater than f; max so that we conclude the block is sliding across the slab (their
accelerations are different).

(a) Using f'= w F,, the above equations yield

o _Hmg—F _(040)(10 kg)(9.8 m/s*)~100 N

A =—6.1 m/s’.
m, 10 kg

The negative sign means that the acceleration is leftward. That is, d, =(=6.1 m/ sz)f
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(b) We also obtain

__Mmg  (0.40)(10 kg)(9.8 m/s’)
’ m 40 kg

s

—0.98 m/s’.

As mentioned above, this means it accelerates to the left. Thatis, @, =(-0.98 m/ sz)i
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35. We denote the magnitude of the frictional force av, where o =70 N-s/m. We take
the direction of the boat’s motion to be positive. Newton’s second law gives

dv
—ov=m—.
dt
Thus,
v dv o
—=—— dt
V[) v m J‘O

where v, is the velocity at time zero and v is the velocity at time ¢. The integrals are
evaluated with the result
v ot
In| — |=——
v, m

f= "= 1000ke o905,
o 70 N-s/m

We take v = vo/2 and solve for time:
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36. Using Eq. 6-16, we solve for the area

2mg
Cpv’

A

which illustrates the inverse proportionality between the area and the speed-squared.
Thus, when we set up a ratio of areas — of the slower case to the faster case — we obtain

2
A _(310km/h) oo
A 160 km/h

fast
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37. For the passenger jet D, =7 CplAsz , and for the prop-driven transport D, =1 Cp, Av},
where p, and p, represent the air density at 10 km and 5.0 km, respectively. Thus the
ratio in question is

D, _pv; _ (0.38 kg/m®)(1000 km/h)’ s
D, py (0.67 kg/m')(500 km/h)’
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38. This problem involves Newton’s second law for motion along the slope.
(a) The force along the slope is given by

F, =mgsin0— uF, =mgsin— umg cos 6 = mg(sin @ — i cos &)
= (85.0 kg)(9.80 m/s*)[sin 40.0°— (0.04000) cos 40.0°]
=510 N.

Thus, the terminal speed of the skier is

2F
v = |—E = 2(510 N}) — =66.0 m/s.
CpA  \(0.150)(1.20 kg/m’*)(1.30 m?)

(b) Differentiating v, with respect to C, we obtain

2F
arv,:—l e oonge=_L 2(5130N) —(0.150)>"?dC
2\ p4 2\ (1.20 kg/m’)(1.30 m*)

=—(2.20x10> m/s)dC.
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39. In the solution to exercise 4, we found that the force provided by the wind needed to
equal F'= 157 N (where that last figure is not “significant’”).

(a) Setting ' = D (for Drag force) we use Eq. 6-14 to find the wind speed V' along the
ground (which actually is relative to the moving stone, but we assume the stone is
moving slowly enough that this does not invalidate the result):

y= |2 - 2157 ?I) — =90 m/s =3.2x10° kmv/h.
CpA '\ (0.80)(1.21kg/m’)(0.040 m?)

(b) Doubling our previous result, we find the reported speed to be 6.5 x 10* km/h.

(c) The result is not reasonable for a terrestrial storm. A category 5 hurricane has speeds
on the order of 2.6 x 10 m/s.
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40. (a) From Table 6-1 and Eq. 6-16, we have

2F,
v = =5 = C/OA=2m—‘2g
CpA v,

where v, = 60 m/s. We estimate the pilot’s mass at about m = 70 kg. Now, we convert v =
1300(1000/3600) = 360 m/s and plug into Eq. 6-14:

2
D:%Cpsz :% (2’”—?J v = mg (1]

! vt

which yields D = (70 kg)(9.8 m/s%)(360/60)> = 2 x 10* N.
(b) We assume the mass of the ejection seat is roughly equal to the mass of the pilot.

Thus, Newton’s second law (in the horizontal direction) applied to this system of mass
2m gives the magnitude of acceleration:
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41. The magnitude of the acceleration of the cyclist as it rounds the curve is given by v*/R,
where v is the speed of the cyclist and R is the radius of the curve. Since the road is
horizontal, only the frictional force of the road on the tires makes this acceleration
possible. The horizontal component of Newton’s second law is /= mv*/R. If Fy is the
normal force of the road on the bicycle and m is the mass of the bicycle and rider, the
vertical component of Newton’s second law leads to Fy = mg. Thus, using Eq. 6-1, the
maximum value of static friction is fsmax = L Fy = tsmg. If the bicycle does not slip, <
Lsmg. This means

2 2
V—S,u‘yg - R>-1—.
R “.g

Consequently, the minimum radius with which a cyclist moving at 29 km/h = 8.1 m/s can
round the curve without slipping is

Vv 8dmsY
" g (0.32)(9.8 m/s?)

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

42. With v =96.6 km/h = 26.8 m/s, Eq. 6-17 readily yields

V' (26.8 m/s)?

- =94.7 m/s>
R 7.6 m

which we express as a multiple of g:
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43. Perhaps surprisingly, the equations pertaining to this situation are exactly those in
Sample Problem 6-9, although the logic is a little different. In the Sample Problem, the
car moves along a (stationary) road, whereas in this problem the cat is stationary relative
to the merry-go-around platform. But the static friction plays the same role in both cases
since the bottom-most point of the car tire is instantaneously at rest with respect to the
race track, just as static friction applies to the contact surface between cat and platform.
Using Eq. 6-23 with Eq. 4-35, we find

s = (27R/T )*/gR = 47°R/gT*.

With 7= 6.0 s and R = 5.4 m, we obtain x4 = 0.60.
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44. The magnitude of the acceleration of the car as it rounds the curve is given by v/R,
where v is the speed of the car and R is the radius of the curve. Since the road is
horizontal, only the frictional force of the road on the tires makes this acceleration
possible. The horizontal component of Newton’s second law is /= mv*/R. If Fy is the
normal force of the road on the car and m is the mass of the car, the vertical component of
Newton’s second law leads to Fiy = mg. Thus, using Eq. 6-1, the maximum value of static
friction is
ﬁ,max = U Fy= Usmg.

If the car does not slip, /< usmg. This means
2

Y<ug = v VHRG.

R

Consequently, the maximum speed with which the car can round the curve without
slipping is

Vow = JARE =/(0.60)(30.5 m)(9.8 m/s>) =13 m/s ~ 48 km/h.
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45. (a) Eq. 4-35 gives T=27R/v =22(10 m)/(6.1 m/s) =10 s.

(b) The situation is similar to that of Sample Problem 6-7 but with the normal force
direction reversed. Adapting Eq. 6-19, we find

Fy=m(g—Vv/R)=486 N =4.9x 10> N.

(c) Now we reverse both the normal force direction and the acceleration direction (from
what is shown in Sample Problem 6-7) and adapt Eq. 6-19 accordingly. Thus we obtain

Fy=m(g +v*/R)=1081 N = 1.1 kN.
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46. We will start by assuming that the normal force (on the car from the rail) points up.
Note that gravity points down, and the y axis is chosen positive upwards. Also, the
direction to the center of the circle (the direction of centripetal acceleration) is down.
Thus, Newton’s second law leads to

2
F,—mg =m[—v—].
r

(a) When v =11 m/s, we obtain Fy=3.7 x 10° N.
(b) I:“N points upward.
(c) When v = 14 m/s, we obtain Fy=—-1.3x 10° N, or | Fy|=1.3 x 10° N.

(d) The fact that this answer is negative means that FN points opposite to what we had

assumed. Thus, the magnitude of F, is | F v |=1.3 kN and its direction is down.
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47. At the top of the hill, the situation is similar to that of Sample Problem 6-7 but with
the normal force direction reversed. Adapting Eq. 6-19, we find

Fy = m(g —v*/R).
Since Fiy = 0 there (as stated in the problem) then v* = gR. Later, at the bottom of the
valley, we reverse both the normal force direction and the acceleration direction (from

what is shown in Sample Problem 6-7) and adapt Eq. 6-19 accordingly. Thus we obtain

Fy=m(g +v/R)=2mg=1372N = 1.37 x 10° N.
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48. (a) We note that the speed 80.0 km/h in SI units is roughly 22.2 m/s. The horizontal
force that keeps her from sliding must equal the centripetal force (Eq. 6-18), and the
upward force on her must equal mg. Thus,

Foet =~ (mg)” + (mv*/R)* =547 N.

(b) The angle is tan™'[(mv*/R)/(mg)] = tan ' (v*/gR) = 9.53° (as measured from a vertical
axis).
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49. (a) At the top (the highest point in the circular motion) the seat pushes up on the
student with a force of magnitude Fy = 556 N. Earth pulls down with a force of
magnitude W = 667 N. The seat is pushing up with a force that is smaller than the
student’s weight, and we say the student experiences a decrease in his “apparent weight”
at the highest point. Thus, he feels “light.”

(b) Now Fy is the magnitude of the upward force exerted by the seat when the student is
at the lowest point. The net force toward the center of the circle is F — W = mv*/R (note
that we are now choosing upward as the positive direction). The Ferris wheel is “steadily

rotating” so the value mv’ / R is the same as in part (a). Thus,

2
my

F, = z +W =111 N+667 N="778 N.

(c) If the speed is doubled, mv’ / R increases by a factor of 4, to 444 N. Therefore, at the
highest point we have W — F,, = mv*/R , which leads to

F, =667 N —444 N =223 N.

(d) Similarly, the normal force at the lowest point is now found to be

F,=667N + 444N~ 1.11 kN.
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50. The situation is somewhat similar to that shown in the “loop-the-loop” example done
in the textbook (see Figure 6-10) except that, instead of a downward normal force, we are

dealing with the force of the boom FB on the car — which is capable of pointing any
direction. We will assume it to be upward as we apply Newton’s second law to the car (of
total weight 5000 N): F,—W =ma where m=W /g and a=-v"/r . Note that the

centripetal acceleration is downward (our choice for negative direction) for a body at the
top of its circular trajectory.

(a) If r=10 m and v = 5.0 m/s, we obtain Fz = 3.7 x 10’ N = 3.7 kN.
(b) The direction of FB is up.
(c) If r=10 mand v = 12 m/s, we obtain Fz=—2.3 x 10° N=—2.3 kN, or |Fj | = 2.3 kN.

(d) The minus sign indicates that F » points downward.
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51. The free-body diagram (for the hand straps of mass m) is the
view that a passenger might see if she was looking forward and the
streetcar was curving towards the right (so @ points rightwards in

the figure). We note that |d@|=v* /R where v= 16 km/h = 4.4 m/s.

Applying Newton’s law to the axes of the problem (+x is rightward

and +y is upward) we obtain
2

Tsin@=m>—
R
Tcos@ =mg.
We solve these equations for the angle:
2
6=tan'| L
Rg

which yields 8= 12°.
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52. The centripetal force on the passenger is F =mv’ /7.

(a) The variation of F' with respect to » while holding v constant is

2
my

2
r

dF =— dr .

(b) The variation of F' with respect to v while holding » constant is

dF =" a4y
r

(c) The period of the circular ride is 7' =27zr/v . Thus,

3

m?’  m (271’7/ jz _ 4’ mr

F: = — 3
r r\ T T

and the variation of ' with respect to 7 while holding » constant is

2 3 3
dF =3 i - | Y| ar = ™
T 2rr r
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53. The free-body diagram (for the airplane of mass m) is shown below. We note that 1:“,

is the force of aerodynamic lift and a points rightwards in the |
figure. We also note that |@|=v>/ R where v =480 km/h = 133 m/s. | 5
I ' i
|
Applying Newton’s law to the axes of the problem (+x rightward |

and +y upward) we obtain
2

F}sin@zmv—
R

F,cos@=mg
—
mg

where 6= 40°. Eliminating mass from these equations leads to

2
1%

tan@=—
gR

which yields R = v*/g tan 6=2.2 x 10> m.
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54. The centripetal force on the passenger is F =mv’ /r .

(a) The slope of the plot at v=8.30 m/s is

dF
dv

_2mv _ 2(85.0kg)(8.30 m/s)

Vv=8.30 m/s 3.50 m

=403 N-s/m.

v=8.30 m/s r

(b) The period of the circular ride is 7' =27zr/v. Thus,

b

F: = —
T T?

2
mv:  m(2xr _4ﬂ'2mr
r 7

and the variation of " with respect to 7 while holding » constant is

872 mr

dF ===

dT.

The slope of the plotat 7=2.50s is

dF

dar _ 87’ mr
dT

_ 87°(85.0kg)(3.50m) _

. ~1.50%10° N/s.
T=2.50s (2.50 s)

- 3
T=2.50s T
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55. For the puck to remain at rest the magnitude of the tension force 7 of the cord must
equal the gravitational force Mg on the cylinder. The tension force supplies the
centripetal force that keeps the puck in its circular orbit, so 7= mv*/r. Thus Mg = mv*/r.
We solve for the speed:

=1.81 m/s.

e Mgr _ [(2.50kg)(9.80 m/s*)(0.200 m)
1.50kg

m

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

56. (a) Using the kinematic equation given in Table 2-1, the deceleration of the car is
v =v]+2ad = 0=(35m/s)’ +2a(107 m)

which gives a =—5.72 m/s>. Thus, the force of friction required to stop by car is
f=m|a|=(1400 kg)(5.72 m/s’) =8.0x10° N.

(b) The maximum possible static friction is

Somax = M,mg =(0.50)(1400 kg)(9.80 m/s’) = 6.9x10° N.

(c) If g, =0.40, then f, = g, mg and the deceleration is a =—p, g . Therefore, the speed
of the car when it hits the wall is

v= V2 +2ad = /(35 m/s)* —2(0.40)(9.8 m/s>)(107 m) =~ 20 m/s.
(d) The force required to keep the motion circular is

P mv, (1400 kg)(35.0 m/s)’

' =1.6x10* N.
v 107 m

(e) Since F,. > f, no circular path is possible.

,max ?
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57. We note that the period 7 is eight times the time between flashes (ﬁ s), so T =
0.0040 s. Combining Eq. 6-18 with Eq. 4-35 leads to

_4mmR _ 4(0.030 ke)m*(0.035 m)
(0.0040 )

F =26x10°N.
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58. We refer the reader to Sample Problem 6-10, and use the result Eq. 6-26:

2
f=tan"’ (V—j
gR

with v =60(1000/3600) = 17 m/s and R = 200 m. The banking angle is therefore 8= 8.1°.
Now we consider a vehicle taking this banked curve at v' = 40(1000/3600) = 11 m/s. Its

(horizontal) acceleration is @’ = v'*/ R, which has components parallel the incline and
perpendicular to it:
V2 cos @

a, = a’cosf =

Vv?sin@

, .
a, =asinf=

These enter Newton’s second law as follows (choosing downhill as the +x direction and
away-from-incline as +y):
mgsin@— f =ma,
F,—-mgcos@=ma,
and we are led to
f, _mgsin@-—mv”?cosf/R

F, mgcos@+mv*sin@/R’

We cancel the mass and plug in, obtaining f;/Fy = 0.078. The problem implies we should
set f; = fsmax SO that, by Eq. 6-1, we have 1, =0.078.
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59. The free-body diagram for the ball is shown below. 72 is the tension exerted by the
upper string on the ball, Ji is the tension force of the lower string, and m is the mass of

the ball. Note that the tension in the upper string is greater than the tension in the lower
string. It must balance the downward pull of gravity and the force of the lower string.

}J‘
g I
/ i I
|
ey |
H“x__ﬂ_ |
“"ﬁ-.h_a |
Hnﬁﬁ |
X == mm s f
0~
e mg
T;

(a) We take the +x direction to be leftward (toward the center of the circular orbit) and +y
upward. Since the magnitude of the acceleration is a = VYR, the x component of

Newton’s second law is

2
my

T cos@+1T,cosf= R

where v is the speed of the ball and R is the radius of its orbit. The y component is
I sin@—1T,sin@—mg=0.

The second equation gives the tension in the lower string: 7, = 7, —mg/sin €. Since the
triangle is equilateral &= 30.0°. Thus

(1.34 kg)(9.80 m/sz)
sin 30.0°

T,=350N- =8.74 N.

(b) The net force has magnitude

Frw=(T,+T,)cos8=(35.0 N+8.74 N)cos30.0°=37.9 N.

net,str
(c) The radius of the path is
R=((1.70 m)/2)tan 30.0° = 1.47 m.

Using Fhetstr = mvz/R, we find that the speed of the ball is

RF
v=\/T’m= (1.47 m)37.9 N) =6.45 m/s.
" 1.34 kg

(d) The direction of F,

is leftward (“radially inward’’).

et,str
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60. (a) We note that R (the horizontal distance from the bob to the axis of rotation) is the
circumference of the circular path divided by 27; therefore, R = 0.94/27=0.15 m. The
angle that the cord makes with the horizontal is now easily found:

0= cos ' (R/L) = cos'(0.15 m/0.90 m) = 80°.

The vertical component of the force of tension in the string is 75in& and must equal the
downward pull of gravity (mg). Thus,

ME _040N.
sin @

T =

Note that we are using 7 for tension (not for the period).
(b) The horizontal component of that tension must supply the centripetal force (Eq. 6-18),

so we have Tcos® = mv*/R. This gives speed v = 0.49 m/s. This divided into the
circumference gives the time for one revolution: 0.94/0.49 = 1.9 s.
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61. The layer of ice has a mass of
m,, =(917 kg/m*) (400 mx 500 mx0.0040 m) =7.34x10° kg.

This added to the mass of the hundred stones (at 20 kg each) comes to m = 7.36 x 10° kg.

(a) Setting F = D (for Drag force) we use Eq. 6-14 to find the wind speed v along the
ground (which actually is relative to the moving stone, but we assume the stone is
moving slowly enough that this does not invalidate the result):

5 2
v:\/“ng (0.10)(7.36 x 10° kg)(9.8 m/s*) 10 s 60 k.
4Cp A, \4(0.002)(1.21kg/m*)(400 x 500 m”)

(b) Doubling our previous result, we find the reported speed to be 139 km/h.

(c) The result is reasonable for storm winds. (A category-5 hurricane has speeds on the
order of 2.6 x 10% m/s.)
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62. (a) To be on the verge of sliding out means that the force of static friction is acting
“down the bank” (in the sense explained in the problem statement) with maximum
—

possible magnitude. We first consider the vector sum F of the (maximum) static
friction force and the normal force. Due to the facts that they are perpendicular and their
—

magnitudes are simply proportional (Eq. 6-1), we find F is at angle (measured from the
vertical axis) ¢ = 6+ 6, where tan6, = 1, (compare with Eq. 6-13), and € is the bank

angle (as stated in the problem). Now, the vector sum of F and the vertically downward
pull (mg) of gravity must be equal to the (horizontal) centripetal force (mv*/R), which
leads to a surprisingly simple relationship:

2 2
mv /R
tang = v/ =V

mg Rg

Writing this as an expression for the maximum speed, we have

Rg(tan@+ )
l1—pu tan@

Viax =\/Rg‘[an(6?+tan_I M) =\/

(b) The graph is shown below (with @in radians):

(c) Either estimating from the graph (& = 0.60, upper curve) or calculated it more
carefully leads to v=41.3 m/s = 149 km/h when &= 10° = 0.175 radian.

(d) Similarly (for & = 0.050, the lower curve) we find v=21.2 m/s = 76.2 km/h when &=
10°=0.175 radian.
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63. (a) With 8= 60°, we apply Newton’s second law to the “downbhill” direction:

mgsind—f = ma
S=Jx= M Fy = tx mg cos6.

Thus,
a=g(sinf@— tycos@)=7.5 m/s’.

(b) The direction of the acceleration a is down the slope.

(c) Now the friction force is in the “downhill” direction (which is our positive direction)
so that we obtain

a=g(sin@+ wcos@)=9.5 m/s”.

(d) The direction is down the slope.
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64. Note that since no static friction coefficient is mentioned, we assume f; is not relevant
to this computation. We apply Newton's second law to each block's x axis, which for m;
is positive rightward and for m, is positive downhill:

T—fi = ma
myg sind—-T = mpa

Adding the equations, we obtain the acceleration:

m,gsin@— f,
a=—"—""
m, +m,

For fi = tuF'n = trm1g, we obtain

. (3.0 kg)(9.8 m/s*)sin 30°—(0.25)(2.0 kg)(9.8 m/s*)
3.0kg+2.0kg

=1.96 m/s’.

Returning this value to either of the above two equations, we find 7= 8.8 N.
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65. (a) Using F' = u mg, the coefficient of static friction for the surface between the two
blocks is #, =(12 N)/(39.2 N) = 0.31, where m, g = (4.0 kg)(9.8 m/s?)=39.2 N is the
weight of the top block. Let M =m, +m, =9.0 kg be the total system mass, then the

maximum horizontal force has a magnitude Ma = M, g =27 N.

(b) The acceleration (in the maximal case) is @ = g =3.0 m/s’.
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66. With 8= 40°, we apply Newton’s second law to the “downhill” direction:
mgsin@—f = ma,
f=fi=u Fy = tymgcos@
using Eq. 6-12. Thus,

a=0.75 m/s* = g(sinf— 1 cosh)

determines the coefficient of kinetic friction: z4= 0.74.
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67. (a) To be “on the verge of sliding” means the applied force is equal to the maximum
possible force of static friction (Eq. 6-1, with Fy = mg in this case):

Sfomax= tsmg =353 N.

(b) In this case, the applied force F indirectly decreases the maximum possible value of
friction (since its y component causes a reduction in the normal force) as well as directly
opposing the friction force itself (because of its x component). The normal force turns
out to be

Fy=mg— Fsiné

where 8= 60°, so that the horizontal equation (the x application of Newton’s second law)
becomes

FcosO— fymax = Fcos@— ys(mg — Fsind)=0 = F=39.7N.

N
(c) Now, the applied force F indirectly increases the maximum possible value of friction
(since its y component causes a reduction in the normal force) as well as directly
opposing the friction force itself (because of its x component). The normal force in this
case turns out to be

Fy=mg + Fsiné,

where 8= 60°, so that the horizontal equation becomes

Fcos@— fimax = FcosO— py(mg + Fsin@)=0 = F =320 N.
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68. The free-body diagrams for the two boxes are shown below. T is the magnitude of the
force in the rod (when 7 > 0 the rod is said to be in tension and when 7 < 0 the rod is

under compression), F,, is the normal force on box 2 (the uncle box), F,, is the the

normal force on the aunt box (box 1), fl is kinetic friction force on the aunt box, and fz

1s kinetic friction force on the uncle box. Also, m; = 1.65 kg is the mass of the aunt box
and m, = 3.30 kg is the mass of the uncle box (which is a lot of ants!).

e

For each block we take +x downhill (which is toward the lower-right in these diagrams)
and +y in the direction of the normal force. Applying Newton’s second law to the x and y
directions of first box 2 and next box 1, we arrive at four equations:

m,gsin@—f,-T=m, a
Fy,—m,gcos@=0
mgsin@— f,+T =ma
F,, —mgcos@=0

which, when combined with Eq. 6-2 (f; = t1Fzm where w1y = 0.226 and f, = thF N> where
b = 0.113), fully describe the dynamics of the system.

(a) We solve the above equations for the tension and obtain

Tz[%j (o — 1) 030 =105 N,
m2 +m1

(b) These equations lead to an acceleration equal to

a= g(siné?— (,[127712—4‘[111’1’[1) cosé?] =362 m/s’.

m, +m1

(c) Reversing the blocks is equivalent to switching the labels. We see from our algebraic
result in part (a) that this gives a negative value for 7 (equal in magnitude to the result we
got before). Thus, the situation is as it was before except that the rod is now in a state of
compression.
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69. Each side of the trough exerts a normal force on the crate. The first diagram shows
the view looking in toward a cross section. The net force is along the dashed line. Since
each of the normal forces makes an angle of 45° with the dashed line, the magnitude of
the resultant normal force is given by

F, =2F, cos45°=+/2F,.
The second diagram is the free-body diagram for the crate (from a “side” view, similar to

that shown in the first picture in Fig. 6-53). The force of gravity has magnitude mg,
where m is the mass of the crate, and the magnitude of the force of friction is denoted by f.

We take the +x direction to be down the incline and +y to be in the direction of F,, . Then
the x and the y components of Newton’s second law are

X: mg sin 80— f=ma
y:  Fy.—mgcos 8=0.

Since the crate is moving, each side of the trough exerts a force of kinetic friction, so the
total frictional force has magnitude

/=2 Fy =2, F,, /N2 = \/ZukFNr

Combining this expression with Fy, = mg cos € and substituting into the x component
equation, we obtain

mgsiné’—x/zmgcosﬁz ma .

Therefore a = g(sin@— V2, MU, cosB).
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70. (a) The coefficient of static friction is g = tan(&p) = 0.577 = 0.58.

(b) Using
mgsin@—f= ma

f=fi= i Fy= tpmgcosé

and a = 2d/f* (with d =2.5 m and 7 = 4.0 s), we obtain M= 0.54.
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71. We may treat all 25 cars as a single object of mass m = 25 x 5.0 x 10* kg and (when
the speed is 30 km/h = 8.3 m/s) subject to a friction force equal to

f=25%250%83=52x10*N.

(a) Along the level track, this object experiences a “forward” force T exerted by the
locomotive, so that Newton’s second law leads to

T—f=ma = T=52x10"+(1.25%10°)(0.20)=3.0x10° N.
(b) The free-body diagram is shown next, with 8as the angle of the I
incline. The +x direction (which is the only direction to which we

will be applying Newton’s second law) is uphill (to the upper right
in our sketch).

7,

T—-f—-mgsin@ =ma g ™

Thus, we obtain

where we set @ = 0 (implied by the problem statement) and solve
for the angle. We obtain 6= 1.2°. me Y
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72. An excellent discussion and equation development related to this problem is given in
Sample Problem 6-2. Using the result, we obtain

@=tan”' u =tan"' 0.50 =27°
which implies that the angle through which the slope should be reduced is

¢=45°—27° = 20°.
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73. We make use of Eq. 6-16 which yields

omg 2608
\/ Coni® = \/(1.6)(1.2)n(0.03)2 = 147 m/s.
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74. (a) The upward force exerted by the car on the passenger is equal to the downward
force of gravity (W = 500 N) on the passenger. So the net force does not have a vertical
contribution; it only has the contribution from the horizontal force (which is necessary for

F |=F=210N.

net

maintaining the circular motion). Thus

(b) Using Eq. 6-18, we have

V= \/ﬂ _ [2ION)(ET0 m) _ 44.0 m/s.
m 51.0kg
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75. (a) We note that Fy = mg in this situation, so
fomax = Mmg = (0.52)(11 kg)(9.8 m/s*) = 56 N

Consequently, the horizontal force F needed to initiate motion must be (at minimum)
slightly more than 56 N.

(b) Analyzing vertical forces when F is at nonzero @yields
Fsin 0+F, =mg = f, . =M (mg—F sin @).

,max

Now, the horizontal component of F needed to initiate motion must be (at minimum)
slightly more than this, so

H,mg
cos@+ u sin 6

Fcos@=pu (mg—Fsin ) = F=
which yields F =59 N when 8= 60°.
(c) We now set 8=—-60° and obtain

(0.52)(11kg)(9.8 m/s?)

= - =1.1x10° N.
cos(—60°) +(0.52) sin (—60°)
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76. We use Eq. 6-14, D=1CpAv*, where p is the air density, 4 is the cross-sectional

area of the missile, v is the speed of the missile, and C is the drag coefficient. The area is
given by 4 = 7R*, where R = 0.265 m is the radius of the missile. Thus

D= %(0.75)(1.2 kg/m’)(0265 m)’ (250 m/s)” =62x10° N.
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77. The magnitude of the acceleration of the cyclist as it moves along the horizontal
circular path is given by v?/R, where v is the speed of the cyclist and R is the radius of the
curve.

(a) The horizontal component of Newton’s second law is /= mv*/R, where fis the static
friction exerted horizontally by the ground on the tires. Thus,

85.0 ke )(9.00 m/s)’
f=( ig((? W) _as N
Um

(b) If Fy is the vertical force of the ground on the bicycle and m is the mass of the bicycle
and rider, the vertical component of Newton’s second law leads to Fiy = mg = 833 N. The
magnitude of the force exerted by the ground on the bicycle is therefore

JF +F =275 N) +(833N)? =877 N.
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78. The free-body diagram for the puck is shown below. FN is the

normal force of the ice on the puck, j? is the force of friction (in the —x
direction), and mg is the force of gravity.

(a) The horizontal component of Newton’s second law gives —f = ma,
and constant acceleration kinematics (Table 2-1) can be used to find
the acceleration.

Since the final velocity is zero, v’ = v; + 2ax leads to a = —v; /2x.
This is substituted into the Newton’s law equation to obtain

2 2
_mi_(0110kg)(60ms)
2x 2(15 m)

f

vmg'

(b) The vertical component of Newton’s second law gives Fy—mg = 0, so Fy = mg which

implies (using Eq. 6-2) f= 1 mg. We solve for the coefficient:

P 0.13N o
mg  (0.110 kg)(9.8 m/s?)
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79. (a) The free-body diagram for the person (shown as an L-shaped block) is shown
below. The force that she exerts on the rock slabs is not directly shown (since the
diagram should only show forces exerted on her), but it is related by Newton’s third law)

to the normal forces F, and F,, exerted horizontally by the slabs onto her shoes and

back, respectively. We will show in part (b) that Fy; = Fy, so that we there is no
ambiguity in saying that the magnitude of her push is Fy,. The total upward force due to

(maximum) static friction is f = ]71 + fz where f, =u F,, and f,=u,F,, . The
problem gives the values f4; = 1.2 and 4, = 0.8.

1%

Il
e f" _'\l_"l

A

-

A

v

}” I.Eh

(b) We apply Newton’s second law to the x and y axes (with +x rightward and +y upward
and there is no acceleration in either direction).

FNI_FNz =0
h+/f,-mg=0

The first equation tells us that the normal forces are equal Fy; = Fap = Fy. Consequently,
from Eq. 6-1,

f1 = U, Fy
fz = U, Fy

) Z(ﬂ“sz-
K,

['u“ +1Jf2 = mg

we conclude that

Therefore, f; + o — mg = 0 leads to

#52

which (with m = 49 kg) yields 2 = 192 N. From this we find F, = f, / u , =240 N. This
is equal to the magnitude of the push exerted by the rock climber.

(c) From the above calculation, we find f, = ¢ F,, =288 N which amounts to a fraction

fi_ 288
W (49) (998) 000

or 60% of her weight.
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80. The free-body diagram for the stone is shown on the right,
with F being the force applied to the stone, FN the downward
normal force of the ceiling on the stone, mg the force of gravity,
and f the force of friction. We take the +x direction to be

horizontal to the right and the +y direction to be up. The
equations for the x and the y components of the force according
to Newton’s second law are:

F. =Fcos@—f=ma
F,=Fsin6@—-F,—-mg=0

Now f=uF,, and the second equation gives F, =Fsind—-mg , which yields
f=u,(Fsin@—mg) . This expression is substituted for f'in the first equation to obtain

F cos 60— . (F sin 8 —mg ) = ma.

For a =0, the force is
—Hmg

F= —.
cos -, sin 6

With g4=0.65, m =5.0 kg, and €= 70°, we obtain F'= 118 N.
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81. (a) If we choose “downhill” positive, then Newton’s law gives
mygsin@—f,—T=mya

for block 4 (where 8= 30°). For block B we choose leftward as the positive direction and
write T — fz = mga. Now

fz“l = Mkincline Fng= ,U'mAg cosé
using Eq. 6-12 applies to block 4, and

Jo =W Fng= trmpg.

In this particular problem, we are asked to set &/ = 0, and the resulting equations can be
straightforwardly solved for the tension: 7= 13 N.

(b) Similarly, finding the value of a is straightforward:

a = g(mysin@— w mg)/(my+ mg) =1.6 m/s’.
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82. (a) If the skier covers a distance L during time ¢ with zero initial speed and a constant
acceleration a, then L = af*/2, which gives the acceleration a; for the first (old) pair of
skis:
2(200
g = 2L _2200m) o e

G

(b) The acceleration a, for the second (new) pair is

a =2—L=M=023 m/s’ .
’ (425)°

(c) The net force along the slope acting on the skier of mass m is

F

net

=mgsinf — f, = mg(sinH - U, cosH) =ma
which we solve for g4 for the first pair of skis:

2
4, =tan6— —4 —tan3.00—— OIS 604

gcosf (9.8 m/s?)c0s3.0°

(d) For the second pair, we have

2
b _an3ge - 023w =0.029 .

gcosé (9.8 m/s*)cos3.0°

M, =tan 6 —

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

83. If we choose “downhill” positive, then Newton’s law gives
mgsinf—fr=ma
for the sliding child. Now using Eq. 6-12
Jo= e Fy = temg,
so we obtain a = g(sin@— 1 cos€) = — 0.5 m/s” (note that the problem gives the direction

of the acceleration vector as uphill, even though the child is sliding downhill, so it is a
deceleration). With 8= 35°, we solve for the coefficient and find g4 = 0.76.
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84. At the top of the hill the vertical forces on the car are the upward normal force
exerted by the ground and the downward pull of gravity. Designating +y downward, we
have

2
my

mg—FN :T

from Newton’s second law. To find the greatest speed without leaving the hill, we set Fy
= 0 and solve for v:

v=1JgR = /(9.8 m/s*)(250 m) = 49.5 m/s =49.5(3600/1000) km/h = 178 km/h.
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85. The mass of the car is m = (10700/9.80) kg = 1.09 x 10’ kg. We choose “inward”
(horizontally towards the center of the circular path) as the positive direction.

(a) With v=13.4 m/s and R = 61 m, Newton’s second law (using Eq. 6-18) leads to

2
my

™

=321x10° N .

(b) Noting that Fy = mg in this situation, the maximum possible static friction is found to
be
S = M;mg =(0.35)(10700 N)=3.75x10° N

using Eq. 6-1. We see that the static friction found in part (a) is less than this, so the car
rolls (no skidding) and successfully negotiates the curve.
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86. (a) Our +x direction is horizontal and is chosen (as we also do with +y) so that the
components of the 100 N force F are non-negative. Thus, F, = F cos 8= 100 N, which
the textbook denotes F}, in this problem.

(b) Since there is no vertical acceleration, application of Newton’s second law in the y
direction gives

Fy+F =mg=F,=mg—Fsin0
where m = 25.0 kg. This yields Fiy = 245 N in this case (6= 0°).
(c) Now, F, = F;=F cos 8=86.6 N for 8= 30.0°.

(d) And Fy=mg — F sin 8= 195 N.

(e) We find F, = F;, = F cos 8=50.0 N for 8= 60.0°.
(f) And Fy=mg— F sin 8= 158 N.

(g) The condition for the chair to slide is

F. > f =u F, where u =0.42.

For 8= 0°, we have

F,=100N< f.. =(0.42)(245N)=103 N

so the crate remains at rest.
(h) For 8=30.0°, we find
F,=86.6 N> f  =(042)(195N)=819N
so the crate slides.
(1) For 8= 60°, we get

F.=500N<f

§,max

= (0.42)(158 N)=66.4 N

which means the crate must remain at rest.
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87. For simplicity, we denote the 70° angle as 8 and the magnitude of the push (80 N) as
P. The vertical forces on the block are the downward normal force exerted on it by the
ceiling, the downward pull of gravity (of magnitude mg) and the vertical component of

P (which is upward with magnitude P sin 6). Since there is no acceleration in the vertical
direction, we must have

F, =Psinf—-mg
in which case the leftward-pointed kinetic friction has magnitude
fi =, (Psin@—mg).
Choosing +x rightward, Newton’s second law leads to

P —u, (Psin@—
Poos O—f, =ma = a~= cos@—u, (Psinf@—mg)

m

which yields a = 3.4 m/s* when # = 0.40 and m = 5.0 kg.
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88. (a) The intuitive conclusion, that the tension is greatest at the bottom of the swing, is
certainly supported by application of Newton’s second law there:

2

2
T'-mg= R :T:m[g+%j

where Eq. 6-18 has been used. Increasing the speed eventually leads to the tension at the
bottom of the circle reaching that breaking value of 40 N.

(b) Solving the above equation for the speed, we find

V= R(Z—gj: (0.91 m) ON g gmis?
m 0.37 kg

which yields v =9.5 m/s.
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89. (a) The push (to get it moving) must be at least as big as fsmax= s Fnv (Eq. 6-1, with
Fy=mg in this case), which equals (0.51)(165 N) = 84.2 N.

(b) While in motion, constant velocity (zero acceleration) is maintained if the push is
equal to the kinetic friction force fy = i Fy= Wmg=52.8 N.

(c) We note that the mass of the crate is 165/9.8 = 16.8 kg. The acceleration, using the
push from part (a), is

a=(842N—52.8 N)/(16.8 kg) ~ 1.87 m/s>.
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90. In the figure below, m = 140/9.8 = 14.3 kg is the mass of the child. We use w_ and
w, as the components of the gravitational pull of Earth on the block; their magnitudes

are wy = mg sin &and w, = mg cos 6.

(a) With the x axis directed up along the incline (so that a = —0.86 m/s?), Newton’s
second law leads to

£, —140sin 25°= m(~0.86)

which yields f; = 47 N. We also apply Newton’s second law to the y axis (perpendicular
to the incline surface), where the acceleration-component is zero:

F,—-140c0s25°=0 = F,=127N.

Therefore, 1 = fi/ Fx=0.37.

(b) Returning to our first equation in part (a), we see that if the downhill component of
the weight force were insufficient to overcome static friction, the child would not slide at
all. Therefore, we require 140 sin 25° > f; max = 4 Fy, which leads to tan 25° = 0.47 > u;.
The minimum value of i equals 4 and is more subtle; reference to §6-1 is recommended.
If 1 exceeded 4 then when static friction were overcome (as the incline is raised) then it
should start to move — which is impossible if f; is large enough to cause deceleration! The
bounds on g are therefore given by 0.47 > 1, > 0.37.
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91. We apply Newton’s second law (as Fpush — f = ma). If we find Fpun < fmax, WE
conclude “no, the cabinet does not move” (which means a is actually 0 and /= Fun), and
if we obtain a > 0 then it is moves (so f = f;). For fm.x and f; we use Eq. 6-1 and Eq. 6-2
(respectively), and in those formulas we set the magnitude of the normal force equal to
556 N. Thus, fmax =378 N and f, =311 N.

(a) Here we find Fyush < fmax Which leads to f= Fpun = 222 N.

(b) Again we find Fyush < fmax Which leads to f= Fpun = 334 N.

(c) Now we have Fyush > fmax Which means it moves and f=f; =311 N.

(d) Again we have Fyush > fmax Which means it moves and f=f; =311 N.

(e) The cabinet moves in (c) and (d).
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92. (a) The tension will be the greatest at the lowest point of the swing. Note that there is
no substantive difference between the tension 7 in this problem and the normal force Fy
in Sample Problem 6-7. Eq. 6-19 of that Sample Problem examines the situation at the
top of the circular path (where Fly is the least), and rewriting that for the bottom of the
path leads to

T=mg+ mv/r

where Fly is at its greatest value.
(b) At the breaking point T = 33 N = m(g + v*/r) where m = 0.26 kg and r = 0.65 m.

Solving for the speed, we find that the cord should break when the speed (at the lowest
point) reaches 8.73 m/s.
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93. (a) The component of the weight along the incline (with downhill understood as the
positive direction) is mg sind where m = 630 kg and = 10.2°. With /= 62.0 N, Newton’s
second law leads to

mgsin@ — f =ma

which yields a = 1.64 m/s*. Using Eq. 2-15, we have

80.0 m= (6.20 E) f+t (1.64 Ez) £
S 2 S

This is solved using the quadratic formula. The positive root is # = 6.80 s.

(b) Running through the calculation of part (a) with f=42.0 N instead of /= 62 N results
int=6.76s.
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N
94. (a) The x component of F tries to move the crate while its y component indirectly
contributes to the inhibiting effects of friction (by increasing the normal force).
Newton’s second law implies

x direction: Fcos@—f;=0

y direction: Fy— Fsinf—mg = 0.

To be “on the verge of sliding” means f; = fomax = Fy (Eq. 6-1). Solving these
equations for F (actually, for the ratio of F to mg) yields

£ H,
mg cos@—y sing

This is plotted on the right (€ in degrees).

(b) The denominator of our expression (for F/mg)
vanishes when

cos@—y, sinf=0 = @, =tan" (Lj
M

DU I U B
For ﬂs:0-70,Weobtain9inf_tan [ﬂ_ =55%

(c) Reducing the coefficient means increasing the angle by the condition in part (b).

gl 1 ego
(d) For u, =0.60we have O, = tan (ﬂ_j—” .
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95. The car is in “danger of sliding” down when

M, =tan @ =tan35.0°=0.700.

This value represents a 3.4% decrease from the given 0.725 value.
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96. For the m, = 1.0 kg block, application of Newton's laws result in

Fcos@-T—f, =m,a x axis
F,—-Fsin@-m,g=0 y axis

Since f, = W F, these equations can be combined into an equation to solve for a:
F(cos@—p, sin@)—T — u,m,g =m,a
Similarly (but without the applied push) we analyze the m;= 2.0 kg block:

T—f/=ma x axis

F, —-mg=0 y axis

Using f; = y Fy, the equations can be combined:
T'—pmg=ma

Subtracting the two equations for a and solving for the tension, we obtain

_ m(cos@ -y, sin ) Fe (2.0kg)[cos35°—(0.20)sin 35°]
m, +m, 20kg+1.0kg

T (20N)=9.4 N.
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97. (a) The x component of ﬁ contributes to the motion of the crate while its y
component indirectly contributes to the inhibiting effects of friction (by increasing the
normal force). Along the y direction, we have Fy — Fcos® — mg = 0 and along the x
direction we have Fsin® — f; = 0 (since it is not accelerating, according to the problem).
Also, Eq. 6-2 gives fi = t Fy. Solving these equations for F yields

F: ll'lkmg .
sin@—u, cos@

(b) When 8 <6, =tan™' u_, F will not be able to move the mop head.
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98. Consider that the car is “on the verge of sliding out” — meaning that the force of static
friction is acting “down the bank™ (or “downhill” from the point of view of an ant on the

—

banked curve) with maximum possible magnitude. We first consider the vector sum F
of the (maximum) static friction force and the normal force. Due to the facts that they are

perpendicular and their magnitudes are simply proportional (Eq. 6-1), we find F is at
angle (measured from the vertical axis) ¢ = €+ 6, where tan 6, = 1 (compare with Eq. 6-

13), and @is the bank angle. Now, the vector sum of /' and the vertically downward pull
(mg) of gravity must be equal to the (horizontal) centripetal force (mv*/R), which leads to
a surprisingly simple relationship:

mv*/R v
tang = mg = Rg -

Writing this as an expression for the maximum speed, we have

Rg(tan@+ )
l-pu tanf

Vo = \/Rg,rtan(é’+tan‘1 ) =\/

(a) We note that the given speed is (in SI units) roughly 17 m/s. If we do not want the
cars to “depend” on the static friction to keep from sliding out (that is, if we want the
component “down the back™ of gravity to be sufficient), then we can set 4 = 0 in the

above expression and obtain v=,/Rgtand. With R = 150 m, this leads to = 11°.
(b) If, however, the curve is not banked (so € = 0) then the above expression becomes

y= \/Rg tan(tan™' ) = \/@

Solving this for the coefficient of static friction g = 0.19.
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99. Replace f; with f; in Fig. 6-5(b) to produce the appropriate force diagram for the first
part of this problem (when it is sliding downhill with zero acceleration). This amounts to
replacing the static coefficient with the kinetic coefficient in Eq. 6-13: 1 = tané. Now
(for the second part of the problem, with the block projected uphill) the friction direction
is reversed from what is shown in Fig. 6-5(b). Newton’s second law for the uphill motion
(and Eq. 6-12) leads to

—mgsinf— ymgcosf@=ma.
Canceling the mass and substituting what we found earlier for the coefficient, we have
—gsinfd—tandgcosf=a.

This simplifies to — 2 gsin@= a. Eq. 2-16 then gives the distance to stop: Ax = —v,*/2a.
(a) Thus, the distance up the incline traveled by the block is Ax = v,*/(4gsin@).

(b) We usually expect 1> i (see the discussion in section 6-1). Sample Problem 6-2
treats the “angle of repose” (the minimum angle necessary for a stationary block to start
sliding downhill): g = tan(Beposc). Therefore, we expect Gepose > € found in part (a).

Consequently, when the block comes to rest, the incline is not steep enough to cause it to
start slipping down the incline again.
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100. Analysis of forces in the horizontal direction (where there can be no acceleration)
leads to the conclusion that F' = Fy; the magnitude of the normal force is 60 N. The
maximum possible static friction force is therefore 1Fy = 33 N, and the kinetic friction
force (when applicable) is i Fy=23 N.

— -
(a) In this case, P = 34 N upward. Assuming f points down, then Newton's second
law for the y leads to
P—mg—f = ma .
if we assume f'= f; and @ = 0, we obtain f'= (34 — 22) N = 12 N. This is less than f; max,

which shows the consistency of our assumption. The answer is: f; = 12 N down.

_)
(b) In this case, P = 12 N upward. The above equation, with the same assumptions as in
part (a), leads to /= (12 — 22) N =—10 N. Thus, | f; | < f;, max, justifying our assumption
that the block is stationary, but its negative value tells us that our initial assumption about

- -
the direction of f is incorrect in this case. Thus, the answer is: f; = 10 N up.

5

(c) In this case, P =48 N upward. The above equation, with the same assumptions as in

part (a), leads to /= (48 — 22) N =26 N. Thus, we again have f; < f; max, and our answer
_)

is: f; =26 N down.

5
(d) In this case, P = 62 N upward. The above equation, with the same assumptions as in
part (a), leads to /= (62 — 22) N = 40 N, which is larger than f; max, -- invalidating our
assumptions. Therefore, we take f'= f; and a # 0 in the above equation; if we wished to
find the value of @ we would find it to be positive, as we should expect. The answer is:

N
fr =23 N down.
(e) In this case, P = 10 N downward. The above equation (but with P replaced with -P)

with the same assumptions as in part (a), leads to f= (=10 — 22) N = —-32 N. Thus, we
have | f; | <fs max, justifying our assumption that the block is stationary, but its negative

%
value tells us that our initial assumption about the direction of f is incorrect in this case.

_)
Thus, the answer is: f; =32 N up.

5
(f) In this case, P = 18 N downward. The above equation (but with P replaced with —P)
with the same assumptions as in part (a), leads to f = (=18 — 22) N = —40 N, which is
larger (in absolute value) than f; max, -- invalidating our assumptions. Therefore, we take
f=frand a # 0 in the above equation; if we wished to find the value of a we would find it

N
to be negative, as we should expect. The answer is: f; =23 N up.
(g) The block moves up the wall in case (d) where a > 0.

(h) The block moves down the wall in case (f) where a < 0.

(1) The frictional force f; is directed down in cases (a), (c) and (d).
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101. (a) The distance traveled by the coin in 3.14 s is 3(22) = 6(0.050) = 0.94 m. Thus,
its speed i1s v=0.94/3.14 = 0.30 m/s.

(b) The centripetal acceleration is given by Eq. 6-17:

2 2

_Y _(030msy g e

r 0.050 m

(c) The acceleration vector (at any instant) is horizontal and points from the coin towards
the center of the turntable.

(d) The only horizontal force acting on the coin is static friction f; and must be large
enough to supply the acceleration of part (b) for the m = 0.0020 kg coin. Using Newton’s
second law,

f, =ma=(0.0020kg)(1.8m/s’)=3.6x10" N.

(e) The static friction f; must point in the same direction as the acceleration (towards the
center of the turntable).

(f) We note that the normal force exerted upward on the coin by the turntable must equal
the coin’s weight (since there is no vertical acceleration in the problem). We also note
that if we repeat the computations in parts (a) and (b) for »'= 0.10 m, then we obtain v' =
0.60 m/s and a' = 3.6 m/s. Now, if friction is at its maximum at » = r, then, by Eq. 6-1,
we obtain

= Lo Mg

mg  mg
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102. (a) The distance traveled in one revolution is 27R = 2/14.6 m) = 29 m. The (constant)
speed is consequently v = (29 m)/(30 s) = 0.96 m/s.

(b) Newton’s second law (using Eq. 6-17 for the magnitude of the acceleration) leads to
2

f = m[%} = m(0.20)

in SI units. Noting that Fy= mg in this situation, the maximum possible static friction is
Jfsmax = Ms mg using Eq. 6-1. Equating this with f; = m(0.20) we find the mass m cancels

and we obtain g = 0.20/9.8 = 0.021.
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103. (a) The box doesn’t move until = 2.8 s, which is when the applied force F reaches
a magnitude of ' = (1.8)(2.8) = 5.0 N, implying therefore that f; max = 5.0 N. Analysis of
the vertical forces on the block leads to the observation that the normal force magnitude
equals the weight Fiy=mg = 15 N. Thus, i = f;, max/Fy = 0.34.

(b) We apply Newton’s second law to the horizontal x axis (positive in the direction of
motion):
F - fo=ma = 18t — f, =(15)(12r — 24)

Thus, we find f; = 3.6 N. Therefore, 1 = f/ Fy = 0.24.
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104. We note that Fiy = mg in this situation, so f; = mg = (0.32) (220 N) = 70.4 N and
Sfsmax = smg = (0.41) (220 N) =90.2 N.

(a) The person needs to push at least as hard as the static friction maximum if he hopes to
start it moving. Denoting his force as P, this means a value of P slightly larger than

90.2 N is sufficient. Rounding to two figures, we obtain P =90 N.

(b) Constant velocity (zero acceleration) implies the push equals the kinetic friction, so
P=70N.

(c) Applying Newton’s second law, we have

ﬂsmg B /’lkmg
m

P—f,=ma=a=

which simplifies to a = g(ts — 1) = 0.88 m/s’.
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105. Probably the most appropriate picture in the textbook to represent the situation in
this problem is in the previous chapter: Fig. 5-9. We adopt the familiar axes with +x
rightward and +y upward, and refer to the 85 N horizontal push of the worker as P (and
assume it to be rightward). Applying Newton’s second law to the x axis and y axis,

respectively, produces
P—f, =ma
F,-mg=0.

Using v’ =v, +2aAx we find a = 0.36 m/s”. Consequently, we obtain f; = 71 N and Fy =
392 N. Therefore, i = fi/ Fy=0.18.
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106. (a) The centripetal force is given by Eq. 6-18:

2 (1.00 ke)(465 m/s)’
g’ _(LOOkg)(465mis) o aeon

R 6.40 X 10° m

(b) Calling downward (towards the center of Earth) the positive direction, Newton’s
second law leads to

mg — T =ma

where mg = 9.80 N and ma = 0.034 N, calculated in part (a). Thus, the tension in the cord
by which the body hangs from the balance is 7= 9.80 N — 0.03 N = 9.77 N. Thus, this is
the reading for a standard kilogram mass, of the scale at the equator of the spinning Earth.
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107. Except for replacing f; with f;, Fig 6-5 in the textbook is appropriate. With that
figure in mind, we choose uphill as the +x direction. Applying Newton’s second law to

the x axis, we have
f, —Wsin@ =ma where m :K,
g
and where W =40 N, a = +0.80 m/s* and &= 25°. Thus, we find f; = 20 N. Along the y

axis, we have
Z Fy =0=F, =W cos@

so that t4 = fi/ Fy=0.56.
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108. The assumption that there is no slippage indicates that we are dealing with static
friction f;, and it is this force that is responsible for "pushing" the luggage along as the
belt moves. Thus, Fig. 6-5 in the textbook is appropriate for this problem -- if one
reverses the arrow indicating the direction of motion (and removes the word
"impending"). The mass of the box is m = 69/9.8 = 7.0 kg. Applying Newton's law to
the x axis leads to
fs—mgsin @ = ma
where 8= 2.5° and uphill is the positive direction.

(a) Interpreting "temporarily at rest" (which is not meant to be the same thing as
"momentarily at rest") to mean that the box is at equilibrium, we have ¢ = 0 and,
consequently, f; = mg sin 8= 3.0 N. It is positive and therefore pointed uphill.

(b) Constant speed in a one-dimensional setting implies that the velocity is constant --
thus, a = 0 again. We recover the answer f; = 3.0 N uphill, which we obtained in part (a).

(c) Early in the problem, the direction of motion of the luggage was given: downhill.
Thus, an increase in that speed indicates a downhill acceleration a = —0.20 m/s>. We now
solve for the friction and obtain

fs=ma + mgsin 6= 1.6 N,

which is positive -- therefore, uphill.

(d) A decrease in the (downhill) speed indicates the acceleration vector points uphill;
thus, a = +0.20 m/s>. We solve for the friction and obtain

fs=ma+ mgsinf=4.4N,

which is positive -- therefore, uphill.

(e) The situation is similar to the one described in part (c), but with a = —0.57 m/s*>. Now,
fs=ma+mgsind=-1.0N,

or | f.|=1.0 N. Since f, is negative, the direction is downhill.

(f) From the above, the only case where f; is directed downhill is (e).
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109. We resolve this horizontal force into
appropriate components.

(a) Applying Newton’s second law to the x (directed
uphill) and y (directed away from the incline surface)
axes, we obtain

Fcos@— f, —mgsin@ =ma
F, —Fsin@-mgcosd=0.

Using fix = ti F, these equations lead to

T B=5T

i Moosd
‘ "-\_\_ “.* . j_-.‘
e
I, — isind

a =£(cos¢9—,uksin¢9) —g(sin@+ u,cosf)
m

which yields a = -2.1 m/s?, or |a|=2.1 m/s*, for 4= 0.30, F=50 N and m = 5.0 kg.

(b) The direction of a is down the plane.
(c) With vo =+4.0 m/s and v =0, Eq. 2-16 gives

_ (4.0mss)’

AX =————=—=39m.

2(-2.1m/s?)

(d) We expect ys = t; otherwise, an object started into motion would immediately start
decelerating (before it gained any speed)! In the minimal expectation case, where u =
0.30, the maximum possible (downbhill) static friction is, using Eq. 6-1,

Simax = M Fy = 1 (F'sin@+ mg cos )

which turns out to be 21 N. But in order to have no acceleration along the x axis, we must

have

f.=Fcos@—mgsinfd=10 N

(the fact that this is positive reinforces our suspicion that fs points downhill). Since the f;

needed to remain at rest is less than f; max then it stays at that location.
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1. (a) The change in kinetic energy for the meteorite would be

AK =K, -K,=-K, = L= —%(4><10" kg)(15x10° m/s) = -5x10"7,

1 11

or | AK |=5x10" J . The negative sign indicates that kinetic energy is lost.
(b) The energy loss in units of megatons of TNT would be

1 megaton TNT
4.2x10"]

—AK:(5><1014J) [ j = 0.1l megaton TNT.

(c) The number of bombs N that the meteorite impact would correspond to is found by
noting that megaton = 1000 kilotons and setting up the ratio:

N 0.1x1000kiloton TNT _ o
13kiloton TNT ’
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2. With speed v = 11200 m/s, we find

K =%mv2 :%(2.9x105 kg) (11200 m/s)* =1.8x10" J.
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3. (a) From Table 2-1, we have v’ =v] +2aAx . Thus,

v=4vi +2alAx = \/(2.4><107 m/s)2 +2 (3.6x10"” m/s*)(0.035 m) =2.9x10" m/s.
(b) The initial kinetic energy is

(1.67x107"kg)(2.4x107 m/s)2 =4.8x107°].

K. =lmv§ _1
2 2

1

The final kinetic energy is

(1.67%10%" kg) (2.9x10" m/s) = 6.9x107J.

Klemvzzl
2 2

The change in kinetic energy is AK=6.9x 102 J—4.8x 102 J=2.1x 107" J.
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4. The work done by the applied force Fa is given by W = Fa d= F dcos¢. From Fig.
7-24, we see that W =25 Jwhen ¢ =0and d =5.0 cm. This yields the magnitude of Fa :

FL,=K:£=5.0><102 N.
d 0.050m

(a) For ¢ =64°, we have W = F.d cos ¢ = (5.0x10>N)(0.050 m)cos 64°=11].

(b) For ¢=147°, we have W = F,d cos ¢ = (5.0x10*N)(0.050 m)cos147°=-211J.
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5. We denote the mass of the father as m and his initial speed v;. The initial kinetic energy
of the father is

and his final kinetic energy (when his speed is vr=v; + 1.0 m/s) is K, =K. We use

these relations along with Eq. 7-1 in our solution.

(a) We see from the above that K; =3 K, which (with SI units understood) leads to

—mvi=— {—m (vi+l.0m/s)2]

The positive root (from the quadratic formula) yields v; = 2.4 m/s.

(b) From the first relation above (K, =+ K_,), we have

L =2 (L oz,
2 2 \2

and (after canceling m and one factor of 1/2) are led to v, =2v, =4.8 m/s.
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6. We apply the equation x(¢) = x, +v,t ++at’, found in Table 2-1. Since at 1= 0's, xo = 0

and v, =12 m/s, the equation becomes (in unit of meters)
x(1)=12t+1at’.

With x=10 mwhen r=1.0 s, the acceleration is found to be a =—4.0 m/s*>. The fact
that a <0 implies that the bead is decelerating. Thus, the position is described by

x(t) =12t -2.0¢* . Differentiating x with respect to ¢ then yields

)= =12-4.01.
dt

Indeed at # =3.0 s, v(¢ =3.0) = 0and the bead stops momentarily. The speed at =10 sis
v(t=10)=-28 m/s, and the corresponding kinetic energy is

Kzémv2 =%(l.8x10_2kg)(—28 m/s)°=7.11].
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7. By the work-kinetic energy theorem,

W =AK =%mv§, —%mvf =%(2.Okg)((6.0m/s)2 —(4.0m/s)*) =20 1.

We note that the directions of v, and v, play no role in the calculation.
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8. Eq. 7-8 readily yields

W= F,Ax+F,Ay =(2.0 N)cos(100°)(3.0 m) + (2.0 N)sin(100°)(4.0 m) = 6.8 J.
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9. Since this involves constant-acceleration motion, we can apply the equations of Table
2-1, such as x=v ¢ +1at’ (where x,=0). We choose to analyze the third and fifth
points, obtaining

0.2m =v,(1.0 s)+%a (1.0 s)°

0.8m =1v,(2.0 s) +%a (2.0 s)°

Simultaneous solution of the equations leads to v, =0 and a = 040m/s’ . We now have

two ways to finish the problem. One is to compute force from F' = ma and then obtain the
work from Eq. 7-7. The other is to find AK as a way of computing W (in accordance
with Eq. 7-10). In this latter approach, we find the wvelocity at 7=2.0s from

v=v,+at(sov=0.80m/s). Thus,

W=AK = %(3.0kg) (0.80m/s)> = 0.96 7.
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10. Using Eq. 7-8 (and Eq. 3-23), we find the work done by the water on the ice block:

W=F.d= [(210 N)i—(150 N)jH(ls m)i—(12 m)ﬂ = (210 N)(15 m)+ (=150 N)(=12 m)
=5.0x10°J.
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11. We choose +x as the direction of motion (so @ and F are negative-valued).

(a) Newton’s second law readily yields F = (85kg)(—2.0m/s?) so that
F=|F|=17x10"N.

(b) From Eq. 2-16 (with v = 0) we have

(37m/s)’

_ 2
2(—2.0m/sz) 3.4x10"m.

0=v§+2an = Ax=-—

Alternatively, this can be worked using the work-energy theorem.

(c) Since F is opposite to the direction of motion (so the angle ¢ between F and
d=Ax is 180°) then Eq. 7-7 gives the work done as W = —FAx =—-5.8x10"J .

(d) In this case, Newton’s second law vyields F =(85kg)(—4.0m/sz) so that
F=|F|=34x10>N.

(e) From Eq. 2-16, we now have

2
fr=— T 0 m,
2(-4.0m/s)

(f) The force F is again opposite to the direction of motion (so the angle ¢ is again 180°)
so that Eq. 7-7 leads to W = —FAx =-5.8x10"J. The fact that this agrees with the result
of part (c) provides insight into the concept of work.
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12. The change in kinetic energy can be written as
1 P |
AK = Em(vf -Vv)= Em(2an) =malAx

where we have used V2 =v’+2aqAx from Table 2-1. From Fig. 7-27, we see that
=V g

AK =(0-30) J=-30 Jwhen Ax=+5 m. The acceleration can then be obtained as

AK (=301

= =-0.75 m/s".
mAx (8.0 kg)(5.0 m)

a=

The negative sign indicates that the mass is decelerating. From the figure, we also see
that when x =5 m the kinetic energy becomes zero, implying that the mass comes to rest
momentarily. Thus,

ve =V’ =2aAx=0-2(-0.75 m/s*)(5.0 m)=7.5 m’/s?,

or v, =2.7 m/s . The speed of the object when x =-3.0 m is

vz\/vo2 +2aAx =\/7.5 m’/s’ +2(=0.75m/s*)(-=3.0 m) =12 m/s=3.5 m/s.
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13. (a) The forces are constant, so the work done by any one of them is given by
W=F-d,where d is the displacement. Force F, is in the direction of the displacement,

SO
W, =Fdcos¢, =(5.00N)(3.00m)cos0°=15.0 J.

Force F’z makes an angle of 120° with the displacement, so
W, =F,dcos¢, =(9.00N)(3.00m)cos120°=-13.5 J.
Force 133 is perpendicular to the displacement, so
W5 = Fsd cos ¢ = 0 since cos 90° = 0.
The net work done by the three forces is

W =W, +W,+W,=15.0 J-13.5 J+0=+1.50 I.

(b) If no other forces do work on the box, its kinetic energy increases by 1.50 J during the
displacement.
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14. (a) From Eq. 7-6, F'= W/x = 3.00 N (this is the slope of the graph).

(b) Eq. 7-10 yields K = K; + W =13.00 J + 6.00 ] = 9.00 J.
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15. Using the work-kinetic energy theorem, we have

AK:W:F-C?:chow)

In addition, F =12 Nand d =+/(2.00 m) +(=4.00 m)> +(3.00 m)> =5.39 m.

(a) If AK =+4+30.0 J, then

¢=cos™ (ﬁj =cos”' 30.07 =62.3°.
Fd (12.0 N)(5.39 m)
(b) AK ==30.0 J, then

¢=cos” (ﬁj =cos”’ —3007 =118°
Fd (12.0 N)(5.39 m)
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16. The forces are all constant, so the total work done by them is given by W =F _Ax,

net

where F is the magnitude of the net force and Ax is the magnitude of the displacement.
We add the three vectors, finding the x and y components of the net force:

FE. . =—F —F,sin50.0°+ F; c0s35.0°=-3.00 N - (4.00 N)sin 35.0°+ (10.0 N) cos 35.0°

net x

=2.13N

F. =-F,c0s50.0°+ F, sin35.0°=—(4.00N) c0s50.0°+(10.0 N)sin 35.0°

nety

=3.17N.

The magnitude of the net force is

F = F +F, =y(2.13N)* +(3.17 N)* =3.82N.

The work done by the net force is

W=F_d=(3.82N)(4.00m)=153]

where we have used the fact that d HFnet (which follows from the fact that the canister
started from rest and moved horizontally under the action of horizontal forces — the
resultant effect of which is expressed by F, ).
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17. (a) We use F to denote the upward force exerted by the cable on the astronaut. The
force of the cable is upward and the force of gravity is mg downward. Furthermore, the
acceleration of the astronaut is g/10 upward. According to Newton’s second law, F' — mg
= mg/10, so F = 11 mg/10. Since the force F and the displacement d are in the same

direction, the work done by F is

11mgd 11 (72 kg)(9.8 m/s*)(15 m)
10 10

W.=Fd= =1.164x10* J

which (with respect to significant figures) should be quoted as 1.2 x 10* J.

(b) The force of gravity has magnitude mg and is opposite in direction to the
displacement. Thus, using Eq. 7-7, the work done by gravity is

W, =-mgd =— (72 kg)(9.8 m/s*)(15 m) = —1.058x10" J

which should be quoted as — 1.1 x 10" J.

(c) The total work done is W =1164x10"J-1.058x10"J=1.06x10’J . Since the
astronaut started from rest, the work-kinetic energy theorem tells us that this (which we
round to 1.1x10°J) is her final kinetic energy.

(d) Since K =<mv*, her final speed is

3
- /2_K: 2(1.06x10 J):5.4m/s.
m 72 kg
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18. In both cases, there is no acceleration, so the lifting force is equal to the weight of the
object.

(a) Eq. 7-8 leads to W = F-d= (360kN)(0.10m) =36 kJ.

(b) In this case, we find W = (4000 N)(0.050 m) =2.0x10* J.
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19. (a) We use F to denote the magnitude of the force of the cord on the block. This force
is upward, opposite to the force of gravity (which has magnitude Mg). The acceleration is
a = g/ 4 downward. Taking the downward direction to be positive, then Newton’s second

law yields
E

net

=mi = Mg—F :M(%)

so F'=3Mg/4. The displacement is downward, so the work done by the cord’s force is,
using Eq. 7-7,
Wr=—Fd=-3Mgd/4.

(b) The force of gravity is in the same direction as the displacement, so it does work
W =Mgd.
g

(c) The total work done on the block is —3M gd/4+ M gd = M gd /4. Since the block
starts from rest, we use Eq. 7-15 to conclude that this (M gd /4) is the block’s kinetic
energy K at the moment it has descended the distance d.

(d) Since K =1Mv*, the speed is

oo [ PO _ sl
M M 2

at the moment the block has descended the distance d.
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20. (a) Using notation common to many vector capable calculators, we have (from Eq. 7-
8) W = dot([20.0,0] + [0, —(3.00)(9.8)], [0.500 £ 30.0°]) = +1.31J.

(b) Eq. 7-10 (along with Eq. 7-1) then leads to

v=4/2(1.31 J)/(3.00 kg) = 0.935 m/s.
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21. The fact that the applied force F“acauses the box to move up a frictionless ramp at a
constant speed implies that there is no net change in the kinetic energy: AK =0. Thus,
the work done by 15“ must be equal to the negative work done by gravity: W, =—W,.

Since the box is displaced vertically upward by #=0.150 m, we have

W, =-+mgh = (3.00 kg)(9.80 m/s*)(0.150 m) =4.41J
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22. From the figure, one may write the kinetic energy (in units of J) as a function of x as

K =K, —20x=40-20x

Since W =AK =F, -Ax, the component of the force along the force along +x is
F,=dK /dx=-20 N. The normal force on the block is F, =F,, which is related to the

gravitational force by
mg = \|F} +(=F,)" .

(Note that F), points in the opposite direction of the component of the gravitational force.)
With an initial kinetic energy K =40.0 J and v, =4.00 m/s , the mass of the block is

_ 2K, 2(4007)
Vo (4.00m/s)’

5.00 kg.

Thus, the normal force is

F,=(mg)* —F? =\J(5.0kg)* (9.8 m/s*)* —(20 N)* =44.7 N=45 N,
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23. Eq. 7-15 applies, but the wording of the problem suggests that it is only necessary to
examine the contribution from the rope (which would be the “W,” term in Eq. 7-15):

W,=—(50N)(0.50 m)=-251]
(the minus sign arises from the fact that the pull from the rope is anti-parallel to the

direction of motion of the block). Thus, the kinetic energy would have been 25 J greater
if the rope had not been attached (given the same displacement).
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24. We use d to denote the magnitude of the spelunker’s displacement during each stage.
The mass of the spelunker is m = 80.0 kg. The work done by the lifting force is denoted
W;where i =1, 2, 3 for the three stages. We apply the work-energy theorem, Eq. 17-15.

(a) For stage 1, W, —mgd = AK, = 1mv;, where v, =5.00 m/s. This gives
W, =mgd +%mvl2 =(80.0 kg)(9.80 m/s*)(10.0 m) +%(80.0 kg)(5.00 m/s)’ =8.84x10° J.

(b) For stage 2, W, — mgd = AK, = 0, which leads to

W, =mgd =(80.0 kg)(9.80 m/s*)(10.0 m)=7.84x10° J.

(c) For stage 3, W, —mgd = AK, = —1mv] . We obtain

W, =mgd —%mvf =(80.0 kg)(9.80 m/s*)(10.0 m) —%(80.0 kg)(5.00 m/s)’ = 6.84x10° J.
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25. (a) The net upward force is given by
F+F,—-(m+M)g=(m+M)a

where m = 0.250 kg is the mass of the cheese, M = 900 kg is the mass of the elevator cab,
F is the force from the cable, and F,, =3.00 N is the normal force on the cheese. On the

cheese alone, we have

_ 2
Fomg=ma = a=>00N=(0250 ke)O80m/s) o o
0.250 kg

Thus the force from the cable is F =(m+M)(a+g)—F, =1.08x10* N, and the work
done by the cable on the cab is

W =Fd, =(1.80x10* N)(2.40 m) =2.59x10" J.
(b) If W=92.61kJand d, =10.5 m, the magnitude of the normal force is

4
F,=(m+M)g —dz = (0.250 kg + 900 kg)(9.80 m/s?) —% =245N.

2 S m
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26. The spring constant is £ = 100 N/m and the maximum elongation is x; = 5.00 m.
Using Eq. 7-25 with xy= 0, the work is found to be

w =%kxf = %(100 N/m)(5.00 m)* =1.25x10° J.
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27. From Eq. 7-25, we see that the work done by the spring force is given by

/8 =%k(xi2 —xj.) )

The fact that 360 N of force must be applied to pull the block to x =+ 4.0 cm implies that
the spring constant is

360N

4.0 cm

k =90 N/cm =9.0x10° N/m.

(a) When the block moves from x;, =+5.0 cmto x=+3.0 cm, we have

W, =%(9.0><103 N/m)[(0.050 m)* —(0.030 m)*]=7.2 J.

(b) Moving from x;, =+5.0 cmto x=-3.0 cm, we have

W = %(9.0x103 N/m)[(0.050 m)* — (=0.030 m)*]=7.2 J.

(c) Moving from x, =+5.0 cmto x=-5.0 cm, we have

W, :%(9.0><103 N/m)[(0.050 m)* —(=0.050 m)*]=0J.

(d) Moving from x;, =+5.0 cmto x=-9.0 cm, we have

/4 =%(9.0><103 N/m)[(0.050 m)* —(—0.090 m)*]=-25 J.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

28. We make use of Eq. 7-25 and Eq. 7-28 since the block is stationary before and after
the displacement. The work done by the applied force can be written as

a

W =-W. =%k(x;.—xi2).

The spring constant is k=(80 N)/(2.0 cm)=4.0x10°N/m. With W, =4.0J , and

x,=—2.0 cm, we have

x, =% W, +x’ =+ 2(4'(3) D +(=0.020 m)* =+0.049 m =+4.9 cm.
TNk (4.0x10° N/m)
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29. (a) As the body moves along the x axis from x; = 3.0 m to x,= 4.0 m the work done by
the force is

W: J:f F} dx: J::/ _6X dX:—?)()C./Zf _xl_z):_?’ (402 _3.02):_21 J
According to the work-kinetic energy theorem, this gives the change in the kinetic energy:

W=AK=%m(v§. —v.z)

l

where v; is the initial velocity (at x;) and v, is the final velocity (at x/). The theorem yields

v, = 2—W+vf= M+(8.0m/s)2=6.6m/s,.
: m 2.0kg

(b) The velocity of the particle is v/= 5.0 m/s when it 1s at x = x. The work-kinetic energy
theorem is used to solve for xz The net work done on the particle is W = —3(x; —x.z) , SO

1

the theorem leads to

2

—3(x; - X; ) = %m (v? — vi2 )
Thus,

X, :\/—%(vj —v? )+ :J_E;—Z%((S'O m/s)> —(8.0 m/s)* )+(3.0 m)> =4.7 m.
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30. The work done by the spring force is given by Eq. 7-25:
1 2 2
W, :Ek(xi —X7).

Since F, =—kx, the slope in Fig. 7-36 corresponds to the spring constant £. Its value is
given by k=80 N/cm=8.0x10" N/m.

(a) When the block moves from x;, =+8.0 cmto x=+5.0 cm, we have
W, :%(S.OXIO3 N/m)[(0.080 m)* —(0.050 m)*]=15.6 I =16 J.
(b) Moving from x;, =+8.0 cmto x=-5.0 cm, we have
W, = %(8.0x103 N/m)[(0.080 m)* —(—=0.050 m)*]=15.6 J =16 J.
(c) Moving from x;, =+8.0 cmto x=-8.0 cm, we have
/4 :%(S.OXIO3 N/m)[(0.080 m)* —(=0.080 m)*]=0 J.
(d) Moving from x, =+8.0 cmto x=-10.0 cm, we have

W, = %(8.0><103 N/m)[(0.080 m)* —(=0.10 m)*]=-14.4 I = —14].
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31. The work done by the spring force is given by Eq. 7-25: W, = %k(xi2 — x;.) .

The spring constant £ can be deduced from Fig. 7-37 which shows the amount of work
done to pull the block from 0 to x = 3.0 cm. The parabola W, = kx* /2 contains (0,0), (2.0

cm, 040 J) and (3.0 cm, 090 J). Thus, we may infer from the data that
k=2.0x10° N/m.

(a) When the block moves from x; =+5.0 cmto x=+4.0 cm, we have
W = %(2.0><103 N/m)[(0.050 m)* —(0.040 m)*]=0.90 J.
(b) Moving from x;, =+5.0 cmto x=-2.0 cm, we have
W, = %(2.0><103 N/m)[(0.050 m)® —(=0.020 m)*]=2.11J.
(c) Moving from x, =+5.0 cmto x=-5.0 cm, we have

W, =%(2.0x103 N/m)[(0.050 m)* —(=0.050 m)*]=0 J.
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32. Hooke’s law and the work done by a spring is discussed in the chapter. We apply
work-kinetic energy theorem, in the form of AK =W, +W,_, to the points in Figure 7-38 at

x = 1.0 m and x = 2.0 m, respectively. The “applied” work W, is that due to the constant
force P.

4J=P1.0 m)—%k(l.o m)’

0=P(2.0 m) —%k(2.0 m)’

(a) Simultaneous solution leads to P = 8.0 N.

(b) Similarly, we find £ = 8.0 N/m.
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33. (a) This is a situation where Eq. 7-28 applies, so we have
Fx=3k? = (3.0N)x=3(50 N/m)’®

which (other than the trivial root) gives x = (3.0/25) m =0.12 m.
(b) The work done by the applied force is W, = Fx = (3.0 N)(0.12 m) =0.36J.

(c) Eq. 7-28 immediately gives W, =-W, =-0.36 J.

(d) With K, = K considered variable and K; = 0, Eq. 7-27 gives K = Fx — %kxz. We take

the derivative of K with respect to x and set the resulting expression equal to zero, in
order to find the position x, which corresponds to a maximum value of K

x.= £ = (3.0/50)m =0.060 m.

We note that x. is also the point where the applied and spring forces “balance.”

(e) At x, we find K = Kyax = 0.090 J.
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34. From Eq. 7-32, we see that the “area” in the graph is equivalent to the work done.
Finding that area (in terms of rectangular [length X width] and triangular
[+ base x height] areas) we obtain

wW=W,

0<x<2

+W. +W, +W,

2<x<4 4<x<6 6<x<8

=(20+10+0-5) J=25J.
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35. (a) The graph shows F as a function of x assuming x is positive. The work is negative
as the object moves from x =0 to x = x, and positive as it moves from x = x, to x =2x,.

Since the area of a triangle is (base)(altitude)/2, the
work done from x=0tox=x, is —(x,)(F,)/2and

the work done from x = x, to x = 2x, is at

(2x, —x) (Fy) /2= (x,)(F,)/2

. . X 2X;
The total work is the sum, which is zero. 0 .

(b) The integral for the work is —F

2
W:LZXOF X |av=F| X—x
’ X, ’ 2x,
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36. According to the graph the acceleration a varies linearly with the coordinate x. We
may write a = o, where o is the slope of the graph. Numerically,

20 m/s*
o="——"
8.0m

=255,

The force on the brick is in the positive x direction and, according to Newton’s second
law, its magnitude is given by F' =ma = max. 1f xr1s the final coordinate, the work done
by the force is

o (10kg)(2.557%)

W: Lx,/F dx:maLx/x dx:m2 xf 2 (80 m)2:80x102 J
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37. We choose to work this using Eq. 7-10 (the work-kinetic energy theorem). To find the
initial and final kinetic energies, we need the speeds, so

v = dx =3.0—8.0¢ + 3.0¢*
dt

in SI units. Thus, the initial speed is v; = 3.0 m/s and the speed at t = 4 s is v/ = 19 m/s.
The change in kinetic energy for the object of mass m = 3.0 kg is therefore

AKzém (vf-—vl.z)=528 J

which we round off to two figures and (using the work-kinetic energy theorem) conclude
that the work done is W =5.3x10°J.
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38. Using Eq. 7-32, we find
1.25 452
W= | et dx=021]

0.25
where the result has been obtained numerically. Many modern calculators have that

capability, as well as most math software packages that a great many students have
access to.
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39. (a) We first multiply the vertical axis by the mass, so that it becomes a graph of the
applied force. Now, adding the triangular and rectangular “areas” in the graph (for 0 < x
<4) gives 42 J for the work done.

(b) Counting the “areas” under the axis as negative contributions, we find (for 0 < x < 7)
the work to be 30 J at x = 7.0 m.

(c) And at x = 9.0 m, the work is 12 J.

(d) Eq. 7-10 (along with Eq. 7-1) leads to speed v = 6.5 m/s at x = 4.0 m. Returning to
the original graph (where a was plotted) we note that (since it started from rest) it has
received acceleration(s) (up to this point) only in the +x direction and consequently must
have a velocity vector pointing in the +x direction at x = 4.0 m.

(e) Now, using the result of part (b) and Eq. 7-10 (along with Eq. 7-1) we find the speed
is 5.5 m/s at x = 7.0 m. Although it has experienced some deceleration during the 0 < x <
7 interval, its velocity vector still points in the +x direction.

(f) Finally, using the result of part (c) and Eq. 7-10 (along with Eq. 7-1) we find its speed
v=3.5m/s atx=9.0 m. It certainly has experienced a significant amount of deceleration
during the 0 < x < 9 interval; nonetheless, its velocity vector still points in the +x
direction.
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40. (a) Using the work-kinetic energy theorem
2.0 2 1 3
K, =K, + J; (2.5-x7) dx=0+(2.5)(2.0) —5(2.0) =2.31.

(b) For a variable end-point, we have Ky as a function of x, which could be differentiated
to find the extremum value, but we recognize that this is equivalent to solving F' = 0 for x:

F=0= 25-x*=0.

Thus, K is extremized at x = +/2.5=1.6 m and we obtain
K, =K, + fﬁ(2.5—xZ)dx=0+(2.5)(\/2.5)—% (N2.5)7=2.61.

Recalling our answer for part (a), it is clear that this extreme value is a maximum.
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41. As the body moves along the x axis from x; = 0 m to x,= 3.00 m the work done by the

force is
3

w=["F dc=["(cx-3.00:)dx =| Sx* =% | =£(3.00)* =(3.00)’
x 2 2
i Xi 0

=4.50c—-27.0.

However, W =AK =(11.0-20.0)=-9.00 J from the work-kinetic energy theorem.

Thus,
4.50c-27.0=-9.00

or c=4.00 N/m.
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42. We solve the problem using the work-kinetic energy theorem which states that the
change in kinetic energy is equal to the work done by the applied force, AK =W . In our
problem, the work done is W = F'd , where F'is the tension in the cord and d is the length
of the cord pulled as the cart slides from x; to x,. From Fig. 7-42, we have

d =[x +1* —x2 +1* =J(3.00 m)> +(1.20 m)? =/(1.00 m)? +(1.20 m)’
=323 m-1.56m=1.67m

which yields AK = Fd =(25.0 N)(1.67 m)=41.7 J.
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43. The power associated with force F is given by P = F - ¥, where ¥ is the velocity
of the object on which the force acts. Thus,

P=F-v=Fvcosg=(122 N)(5.0 m/s)cos37°=4.9x10> W.
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44. Recognizing that the force in the cable must equal the total weight (since there is no
acceleration), we employ Eq. 7-47:

P = Fvcos 8 = mg(gj
At

where we have used the fact that 8 =0° (both the force of the cable and the elevator’s
motion are upward). Thus,

210 m

P=(3.0x10° kg)(9.8 m/sz)(—
23 s

j:2.7><105 W.
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45. (a) The power is given by P = Fv and the work done by F from time t, to time ¢, is
given by

w=["rPar=["Fva.
4 4

Since F is the net force, the magnitude of the acceleration is ¢ = F/m, and, since the
initial velocity 1s v,=0 , the velocity as a function of time is given by

v=v,+at =(F/m)t. Thus
(2, 2 _1 2 2 2
W_f (F* /)t di=—(F?  m)(i; =17).

For ¢, =0 and ¢, =1.0s,

2
W=l GON (1.05)’=0.83 J.
2\ 15kg

(b) For #, =1.0s, and ¢, =2.0s,

W:l[(5-0 N)?

2 T5ke j[(z.o s)>—(1.0s)’]1=2.51.

(c) For ¢, =2.0s and ¢, =3.0s,

W_l[(s.o N)?

- 15 kg

> J[(&O s)’—(2.0s)’]1=4.21.

(d) Substituting v = (F/m)t into P = Fv we obtain P = F’ t/m for the power at any time ¢.
At the end of the third second

. ((5.0 N)? (3.0's)

= 50W.
15 kg
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46. (a) Since constant speed implies AK = 0, we require W, =W, , by Eq. 7-15. Since
W, is the same in both cases (same weight and same path), then W, =9.0x1 0° J just as it

was in the first case.

(b) Since the speed of 1.0 m/s is constant, then 8.0 meters is traveled in 8.0 seconds.
Using Eq. 7-42, and noting that average power is the power when the work is being done
at a steady rate, we have

p W _9001

=—= =1.1x10°> W.
At 8.0s

(c) Since the speed of 2.0 m/s is constant, 8.0 meters is traveled in 4.0 seconds. Using Eq.
7-42, with average power replaced by power, we have

_ W _900]
At 405

=225W =2.3x10> W.
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47. The total work is the sum of the work done by gravity on the elevator, the work done
by gravity on the counterweight, and the work done by the motor on the system:

Wr=We+ We+ Wi
Since the elevator moves at constant velocity, its kinetic energy does not change and
according to the work-kinetic energy theorem the total work done is zero. This means W,
+ W, + Wy = 0. The elevator moves upward through 54 m, so the work done by gravity on
itis

W, =-m_gd =—(1200 kg)(9.80 m/s*)(54 m)=-6.35 x 10° J.

The counterweight moves downward the same distance, so the work done by gravity on it
is

W.=m_ gd =(950 kg)(9.80 m/s*)(54 m)=5.03x10" J.
Since Wr= 0, the work done by the motor on the system is

W.=-W,-W,=6.35x10° ] — 5.03x10° J = 1.32x10° J.

This work is done in a time interval of Az = 3.0 min = 180 s, so the power supplied by
the motor to lift the elevator is

N

At 180 s

5
W 12X 10T 745100 w.
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48. (a) Using Eq. 7-48 and Eq. 3-23, we obtain
P=F -7 =(40N)(—2.0 m/s)+ (9.0 N)(4.0 m/s) = 28 W.
(b) We again use Eq. 7-48 and Eq. 3-23, but with a one-component velocity: v = v}.

P=F-Vy =-12W=(-2.0N)v.
which yields v =6 m/s.
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49. (a) Eq. 7-8 yields

W= FyAx+ FyAy+ F,Az
=(2.00 N)(7.5 m — 0.50 m) + (4.00 N)(12.0 m — 0.75 m) + (6.00 N)(7.2m — 0.20 m)
=101J = 1.0x 10*J.

(b) Dividing this result by 12 s (see Eq. 7-42) yields P =8.4 W.
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50. (a) Since the force exerted by the spring on the mass is zero when the mass passes
through the equilibrium position of the spring, the rate at which the spring is doing work
on the mass at this instant is also zero.

(b) The rate is given by P = F - v = — Fv, where the minus sign corresponds to the
fact that F and ¥ are anti-parallel to each other. The magnitude of the force is given by

F =l = (500 N/m)(0.10 m) = 50 N,

while v is obtained from conservation of energy for the spring-mass system:
1, 1, 1 2, 1 2
E=K+U=10 J:Emv +§kx 25(0.30 kg)v +E(500 N/m)(0.10 m)

which gives v=7.1 m/s. Thus,

P=—Fy=—(50 N)(7.1 m/s)=-3.5 x 10° W.
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51. (a) The object’s displacement is

d=d, —d, =(-8.00 m)i+(6.00 m)j+(2.00 m)k .
Thus, Eq. 7-8 gives

W =F-d=(3.00 N)(—-8.00 m)+(7.00 N)(6.00 m)+(7.00 N)(2.00 m)=32.0 J.
(b) The average power is given by Eq. 7-42:

, W _320 _g 00w,
51 4.00

(c) The distance from the coordinate origin to the initial position is

d, =/(3.00 m)’ +(=2.00 m)> +(5.00 m)> =6.16 m,

and the magnitude of the distance from the coordinate origin to the final position is

d, =/(=5.00 m)* +(4.00 m)> +(7.00 m)* =9.49 m.
Their scalar (dot) product is
d,-d, =(3.00 m)(=5.00 m)+(~2.00 m)(4.00 m)+(5.00 m)(7.00 m)=12.0 m’,

Thus, the angle between the two vectors is

d-d,
p=cos™' | — =cos‘l(Lj:78.2°.
dd, (6.16)(9.49)
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52. According to the problem statement, the power of the car is

aw d(1 , dv
P=—=—| —mv" |=mv— = constant.
dr  dt\2 dt

The condition implies dt =mvdv/ P, which can be integrated to give

T r mvdv mv;
La’t:J: 2 = T= 2PT

where v, is the speed of the car at #=T7. On the other hand, the total distance traveled

can be written as

L= [ var = grvm;dv:gfvzdv:";j

By squaring the expression for L and substituting the expression for 7, we obtain
= mv;, 2:8_P mv;, 3:8PT3
3P Om\ 2P Om

PT? = %mL2 = constant.

which implies that

. .y . . T
Differentiating the above equation gives dPT’ +3PT*dT =0, or dT = —3—PdP.
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53. (a) We set up the ratio

1/3
50 km E
1 km 1 megaton

and find E = 50° = 1 x 10° megatons of TNT.

(b) We note that 15 kilotons is equivalent to 0.015 megatons. Dividing the result from
part (a) by 0.013 yields about ten million bombs.
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54. (a) The compression of the spring is d = 0.12 m. The work done by the force of
gravity (acting on the block) is, by Eq. 7-12,

W, =mgd = (025 kg) (9.8 m/s’) (0.12 m) =029 J.

(b) The work done by the spring is, by Eq. 7-26,

W, :—%kdz =—% (250 N/m) (0.12 m)> =—18 J.

(c) The speed v; of the block just before it hits the spring is found from the work-kinetic
energy theorem (Eq. 7-15):

AK=O—%mvl.2 =W, +W,

which yields

Vi:\/(—Z)(WI +W2):\/(—2)(0.29 1-181) oo o
m 0.25kg

(d) If we instead had v, = 7m/s, we reverse the above steps and solve for d”. Recalling
the theorem used in part (c), we have

1 ) ’ ’ ’ 1 72
O—Emvl. =W +W, =mgd _Ekd

which (choosing the positive root) leads to

g = mg ++[m’g* +mkv/’

k

which yields d” = 0.23 m. In order to obtain this result, we have used more digits in our
intermediate results than are shown above (so v, =+/12.048 m/s=3.471m/s and v, =
6.942 m/s).
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55. One approach is to assume a “path” from 7, to 7, and do the line-integral accordingly.

Another approach is to simply use Eq. 7-36, which we demonstrate:
x; Vy _ -4 -3
W= j F.dx+ j} Fdy= L (2x)dx + L (3) dy

with SI units understood. Thus, we obtain W=12J-18J=-61.
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56. (a) The force of the worker on the crate is constant, so the work it does is given by
W, = F-d=Fd cos¢@, where F is the force, d is the displacement of the crate, and ¢ is

the angle between the force and the displacement. Here /=210 N, d = 3.0 m, and ¢ =
20°. Thus,

Wr= (210 N) (3.0 m) cos 20° =590 J.
(b) The force of gravity is downward, perpendicular to the displacement of the crate. The
angle between this force and the displacement is 90° and cos 90° = 0, so the work done

by the force of gravity is zero.

(c) The normal force of the floor on the crate is also perpendicular to the displacement, so
the work done by this force is also zero.

(d) These are the only forces acting on the crate, so the total work done on it is 590 J.
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57. There is no acceleration, so the lifting force is equal to the weight of the object. We
note that the person’s pull F is equal (in magnitude) to the tension in the cord.

(a) As indicated in the hint, tension contributes twice to the lifting of the canister: 27 =

mg. Since |F| =T, we find F\ =98 N.

(b) To rise 0.020 m, two segments of the cord (see Fig. 7-44) must shorten by that
amount. Thus, the amount of string pulled down at the left end (this is the magnitude of

d , the downward displacement of the hand) is 4 = 0.040 m.

(c) Since (at the left end) both F and d are downward, then Eq. 7-7 leads to
W=F-d=(98N)(0.040 m)=3.9 J.

(d) Since the force of gravity F, (with magnitude mg) is opposite to the displacement

—

d. =0.020 m (up) of the canister, Eq. 7-7 leads to
W=F -JC =— (196 N)(0.020 m)=-3.9 J.

g

This is consistent with Eq. 7-15 since there is no change in kinetic energy.
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58. With SI units understood, Eq. 7-8 leads to W = (4.0)(3.0) — ¢(2.0) = 12 — 2c.
(@) f W=0, then c=6.0 N.
(b)If W= 171, then c =-2.5 N.

(c)If W= —181J,thenc=15N.
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59. Using Eq. 7-8, we find
W=F-d=(Fcosf i+F sin93)-(xf+yj) = Fxcos@+ Fysin@

where x =2.0m, y=-4.0m, F =10 N, and &=150°. Thus, we obtain W = -37 J. Note
that the given mass value (2.0 kg) is not used in the computation.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

60. The acceleration is constant, so we may use the equations in Table 2-1. We choose
the direction of motion as +x and note that the displacement is the same as the distance
traveled, in this problem. We designate the force (assumed singular) along the x direction
acting on the m = 2.0 kg object as F.

(a) With vy = 0, Eq. 2-11 leads to a = v/t. And Eq. 2-17 gives Ax = Jvt. Newton’s
second law yields the force F' = ma. Eq. 7-8, then, gives the work:

W=FAx=m|~ lvt =lmv2
t)\2 2

as we expect from the work-kinetic energy theorem. With v = 10 m/s, this yields
W =1.0x10"1J.

(b) Instantaneous power is defined in Eq. 7-48. With = 3.0 s, we find

P=Fv=m(3jv=67 W,
t

(c) The velocity at ' =1.5s is v'=at'=5.0 m/s. Thus, P’ = FV' = 33 W.
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61. The total weight is (100)(660 N) = 6.60 x 10* N, and the words “raises ... at constant
speed” imply zero acceleration, so the lift-force is equal to the total weight. Thus

P=Fv=(6.60x 10%)(150 m/60.0 s) = 1.65 x 10° W.
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62. (a) The force F of the incline is a combination of normal and friction force which is
serving to “cancel” the tendency of the box to fall downward (due to its 19.6 N weight).

Thus, F = mg upward. In this part of the problem, the angle ¢ between the belt and F
is 80°. From Eq. 7-47, we have

P =Fv cos¢=(19.6 N)(0.50 m/s) cos 80° = 1.7 W.

(b) Now the angle between the belt and F is 90°, so that P = 0.

(c) In this part, the angle between the belt and F is 100°, so that

P =(19.6 N)(0.50 m/s) cos 100° =—-1.7 W.
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63. (a) In 10 min the cart moves

d=[60 Mi|f32800mi) | i) =5280 fi
h 60 min/h

so that Eq. 7-7 yields
W = Fdcos ¢ = (40 1b)(5280 ft) cos 30°=1.8x10° ft-Ib.

(b) The average power is given by Eq. 7-42, and the conversion to horsepower (hp) can
be found on the inside back cover. We note that 10 min is equivalent to 600 s.

_1.8x10° ft - Ib

> =305 ft-Ib/s
: 600 s

which (upon dividing by 550) converts to P,y = 0.55 hp.
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64. Using Eq. 7-7, we have W = Fd cos ¢ =1504 J. Then, by the work-kinetic energy

theorem, we find the kinetic energy Ky = K; + W = 0 + 1504 J. The answer 1s therefore
1.5kJ.
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65. (a) To hold the crate at equilibrium in the final situation,  must have the same
magnitude as the horizontal component of the rope’s tension 7 sin &, where @ is the
angle between the rope (in the final position) and vertical:

6= sinl(ﬂj =19.5°,
12.0

But the vertical component of the tension supports against the weight: 7' cos 8=mg.

Thus, the tension is
T=(230kg)(9.80 m/s®)/cos 19.5° =2391 N

and F'= (2391 N) sin 19.5° =797 N.

An alternative approach based on drawing a vector triangle (of forces) in the final
situation provides a quick solution.

(b) Since there is no change in kinetic energy, the net work on it is zero.
(c) The work done by gravity is W, =Fg -d =—mgh , where h = L(1 — cos 8) is the

vertical component of the displacement. With L = 12.0 m, we obtain W, =—1547 J which
should be rounded to three figures: —1.55 kJ.

(d) The tension vector is everywhere perpendicular to the direction of motion, so its work
is zero (since cos 90° = 0).

(¢) The implication of the previous three parts is that the work due to F is —W, (so the
net work turns out to be zero). Thus, Wr=—-W, = 1.55kJ.

(f) Since F does not have constant magnitude, we cannot expect Eq. 7-8 to apply.
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66. From Eq. 7-32, we see that the “area” in the graph is equivalent to the work done. We
find the area in terms of rectangular [length x width] and triangular [ base X height]

areas and use the work-kinetic energy theorem appropriately. The initial point is taken to
be x = 0, where vo = 4.0 m/s.

(a) With K, =1mv; =16 J, we have

K,—K,=W,__ +W,__,+W.

<x<1 I<x<2 2<x<3 =

-4.01J

so that K3 (the kinetic energy when x = 3.0 m) is found to equal 12 J.

(b) With SI units understood, we write W, as F,Ax=(-4.0 N)(x, —3.0 m) and apply

<x<x,

the work-kinetic energy theorem:
Kx/ - K3 = I/V3<x<xf
K, —12=(-4)(x, -3.0)

so that the requirement K =8.0 J leads to x, =4.0 m.

(c) As long as the work is positive, the kinetic energy grows. The graph shows this
situation to hold until x = 1.0 m. At that location, the kinetic energy is

K, =K,+W, _ =161+2.01=181.

<x<l
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67. (a) Noting that the x component of the third force is F3, = (4.00 N)cos(60°), we apply
Eq. 7-8 to the problem:

W=1[5.00 N - 1.00 N + (4.00 N)cos 60°](0.20 m) = 1.20 J.

(b) Eq. 7-10 (along with Eq. 7-1) then yields v =A/2W/m = 1.10 m/s.
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68. (a) In the work-kinetic energy theorem, we include both the work due to an applied
force W, and work done by gravity W, in order to find the latter quantity.

AK =W, +W, = 301=(100 N)(1.8 m)cos 180°+,
leading to W, =2.1x10* J.

(b) The value of W, obtained in part (a) still applies since the weight and the path of the
child remain the same, so AK = W,=2.1x1 0°J.
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69. (a) Eq. 7-6 gives W, = Fd = (209 N)(1.50 m) = 314 ].
(b) Eq. 7-12 leads to W, = (25.0 kg)(9.80 m/s?)(1.50 m)cos(115°) = —155 J.

(c) The angle between the normal force and the direction of motion remains 90° at all
times, so the work it does is zero.

(d) The total work done on the crate is Wr=314J — 155 J =158 J.
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70. After converting the speed to meters-per-second, we find

K=3mv’ =667 kJ.
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71. (a) Hooke’s law and the work done by a spring is discussed in the chapter. Taking
absolute values, and writing that law in terms of differences AF and Ax, we analyze the

first two pictures as follows:

|AF]
240N-110N

k| Ax|
k(60 mm —40 mm)

which yields £ = 6.5 N/mm. Designating the relaxed position (as read by that scale) as x,
we look again at the first picture:

110 N = k(40 mm—x,)
which (upon using the above result for k) yields x, = 23 mm.
(b) Using the results from part (a) to analyze that last picture, we find

W=k(30mm-x,)=45N.
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72. (a) Using Eq. 7-8 and SI units, we find
W=F-d=2i-4])-8i+cj)=16-4c

which, if equal zero, implies ¢ = 16/4 =4 m.

(b) If W> 0 then 16 > 4c¢, which implies ¢ <4 m.

(c) If W <0 then 16 < 4c, which implies ¢ >4 m.
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73. A convenient approach is provided by Eq. 7-48.
P =Fv = (1800 kg + 4500 kg)(9.8 m/s*)(3.80 m/s) = 235 kW.

Note that we have set the applied force equal to the weight in order to maintain constant
velocity (zero acceleration).
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74. (a) The component of the force of gravity exerted on the ice block (of mass m) along
the incline is mg sin @, where 6= sin_l(0.91/ 1.5) gives the angle of inclination for the

inclined plane. Since the ice block slides down with uniform velocity, the worker must
exert a force F “uphill” with a magnitude equal to mg sin 6. Consequently,

F = mgsin 6 = (45 kg)(9.8 m/sz)(olgsﬂJ =2.7x10* N.
Dom

(b) Since the “downhill” displacement is opposite to F , the work done by the worker is

W, =—(2.7x10°N) (1.5 m) =—4.0x 10°J.

(c) Since the displacement has a vertically downward component of magnitude 0.91 m (in
the same direction as the force of gravity), we find the work done by gravity to be

W, =(45kg) (98 m/s*) (0.91 m) =4.0x10°J.

(d) Since FN is perpendicular to the direction of motion of the block, and cos90° = 0,
work done by the normal force is W3 =0 by Eq. 7-7.

(e) The resultant force Fnet is zero since there is no acceleration. Thus, its work is zero, as
can be checked by adding the above results W, + W, + W, =0.
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75. (a) The plot of the function (with SI units understood) is shown below.

I \\

\-\.

] -

n= e,

" ' ' ' ' ' ' [
I [ (R N | ong

Estimating the area under the curve allows for a range of answers. Estimates from 11 J to
14 J are typical.

(b) Evaluating the work analytically (using Eq. 7-32), we have

0 2
W= LlOe_x/zdx=—20e_m —12.6J=13 7.

0
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76. (a) Eq. 7-10 (along with Eq. 7-1 and Eq. 7-7) leads to

vr=(2 d F c0s0)"*= (cos6)"?,

m
where we have substituted 7 =2.0 N, m =4.0 kg and d = 1.0 m.
(b) With v; = 1, those same steps lead to v,= (1 + cos)".
(c) Replacing @with 180° — 6, and still using v; = 1, we find

vy=[1+ cos(180° — 0)]"* = (1 - cos8)".

(d) The graphs are shown on the right. Note that 11- ——-_

as @ is increased in parts (a) and (b) the force
provides less and less of a positive acceleration,
whereas in part (c) the force provides less and less
of a deceleration (as its @ value increases). The
highest curve (which slowly decreases from 1.4 to .
1) is the curve for part (b); the other decreasing -

curve (starting at 1 and ending at 0) is for part (a). - - .

The rising curve is for part (c); it is equal to 1 -

where 6= 90°.
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77. (a) We can easily fit the curve to a concave-downward parabola: x = 11—0 #(10 — 1), from

which (by taking two derivatives) we find the acceleration to be @ = —0.20 m/s>. The
(constant) force is therefore /' = ma = —0.40 N, with a corresponding work given by W =

Fx= Sz—ot(t —10). It also follows from the x expression that v, = 1.0 m/s. This means that

K,:%mv2 =1.0J. Therefore, whent=1.0s, Eq. 7-10 gives K=K, + W =0.64] =0.6 J,

where the second significant figure is not to be taken too seriously.

(b) At £=5.0 s, the above method gives K = 0.

(c) Evaluating the W = 52—0t(t — 10) expression at = 5.0 s and # = 1.0 s, and subtracting,
yields —0.6 J. This can also be inferred from the answers for parts (a) and (b).
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78. The problem indicates that SI units are understood, so the result (of Eq. 7-23) is in
Joules. Done numerically, using features available on many modern calculators, the
result is roughly 0.47 J. For the interested student it might be worthwhile to quote the
“exact” answer (in terms of the “error function™):

1.2
f e dx = Van[2m [erf(6\[2 /5) — erf(3y2 /120)] .
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79. (a) To estimate the area under the curve between x = 1 m and x = 3 m (which should
yield the value for the work done), one can try “counting squares” (or half-squares or
thirds of squares) between the curve and the axis. Estimates between 5 J and 8 J are
typical for this (crude) procedure.

(b) Eq. 7-32 gives
3
a —
Jl 2 dx =

— |
Il
(o)
—

W[

where a = -9 N'm” is given in the problem statement.
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80. (a) Using Eq. 7-32, the work becomes W = %xz — x> (SI units understood). The plot
is shown below:

(b) We see from the graph that its peak value occurs at x = 3.00 m. This can be verified
by taking the derivative of W and setting equal to zero, or simply by noting that this is
where the force vanishes.

(c) The maximum value is W=%(3.00)2 — (3.00)° =13.501J.

(d) We see from the graph (or from our analytic expression) that W =0 at x =4.50 m.

(e) The case is at rest when v=0. Since W = AK =mv" /2, the condition implies W =0.
This happens at x =4.50 m.
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1. (a) Noting that the vertical displacement is 10.0 m — 1.50 m = 8.50 m downward (same
direction as F’g ), Eq. 7-12 yields

— — 2 o_
W, =mgd cos ¢ =(2.00 kg)(9.80 m/s")(8.50 m)cos0° =167 J.

(b) One approach (which is fairly trivial) is to use Eq. 8-1, but we feel it is instructive to
instead calculate this as AU where U = mgy (with upwards understood to be the +y
direction). The result is

AU =mg(y, - y,) = (2.00 kg)(9.80 m/s*)(1.50 m—~10.0 m) =167 J.

(c) In part (b) we used the fact that U; = mgy; =196 J.
(d) In part (b), we also used the fact Ur=mgy,=29 J.

(e) The computation of W, does not use the new information (that U = 100 J at the
ground), so we again obtain W, = 167 J.

(f) As a result of Eq. 8-1, we must again find AU =-W,=-167 J.

(g) With this new information (that Uy = 100 J where y = 0) we have
Ui=mgy; + Uy =296 1.

(h) With this new information (that Uy = 100 J where y = 0) we have
Ur=mgyr+ Uy =129 J.

We can check part (f) by subtracting the new U; from this result.
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2. (a) The only force that does work on the ball is the force of gravity; the force of the rod
is perpendicular to the path of the ball and so does no work. In going from its initial
position to the lowest point on its path, the ball moves vertically through a distance equal
to the length L of the rod, so the work done by the force of gravity is

W =mgL = (0.341 kg)(9.80 m/s*)(0.452 m)=1.5117.

(b) In going from its initial position to the highest point on its path, the ball moves
vertically through a distance equal to L, but this time the displacement is upward,
opposite the direction of the force of gravity. The work done by the force of gravity is

W =-—mgL =—(0.341 kg)(9.80 m/s>)(0.452 m)=—1.511.

(c) The final position of the ball is at the same height as its initial position. The
displacement is horizontal, perpendicular to the force of gravity. The force of gravity
does no work during this displacement.

(d) The force of gravity is conservative. The change in the gravitational potential energy
of the ball-Earth system is the negative of the work done by gravity:

AU =-mgL =—(0.341 kg)(9.80 m/s*)(0.452 m)=—1.511]
as the ball goes to the lowest point.
(e) Continuing this line of reasoning, we find
AU =+mgL = (0.341 kg)(9.80 m/s*)(0.452 m)=1.51J
as it goes to the highest point.

(f) Continuing this line of reasoning, we have AU = 0 as it goes to the point at the same
height.

(g) The change in the gravitational potential energy depends only on the initial and final

positions of the ball, not on its speed anywhere. The change in the potential energy is the
same since the initial and final positions are the same.
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3. (a) The force of gravity is constant, so the work it does is given by W =F-d , where
Fis the force and d is the displacement. The force is vertically downward and has

magnitude mg, where m is the mass of the flake, so this reduces to W = mgh, where 4 is
the height from which the flake falls. This is equal to the radius » of the bowl. Thus
W =mgr=(2.00x107 kg) (9.8 m/s*)(22.0x 107 m) =4.31x107"J.

(b) The force of gravity is conservative, so the change in gravitational potential energy of
the flake-Earth system is the negative of the work done: AU=—-W=-4.31x 10" J.

(c) The potential energy when the flake is at the top is greater than when it is at the
bottom by |AU|. If U= 0 at the bottom, then U =+4.31 x 10~ J at the top.

(d) If U= 0 at the top, then U=—4.31 x 10" J at the bottom.

(e) All the answers are proportional to the mass of the flake. If the mass is doubled, all
answers are doubled.
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4. We use Eq. 7-12 for W, and Eq. 8-9 for U.

(a) The displacement between the initial point and 4 is horizontal, so ¢ = 90.0° and
W, =0 (since cos 90.0° = 0).

(b) The displacement between the initial point and B has a vertical component of //2
downward (same direction as F, ), so we obtain

W,=F, -d =%mgh :%(825 kg)(9.80 m/s*)(42.0 m)=1.70x10° J.

4

(c) The displacement between the initial point and C has a vertical component of 4
downward (same direction as F, ), so we obtain

_ 7 _ 2 _ 5
W,=F,-d =mgh=(825kg)(9.80 m/s?)(42.0 m)=3.40x10° J.

(d) With the reference position at C, we obtain

U, =%mgh =%(825 kg)(9.80 m/s?)(42.0 m)=1.70x10° J

(e) Similarly, we find
U,=mgh=(825kg)(9.80 m/s*)(42.0 m)=3.40x10 J

(f) All the answers are proportional to the mass of the object. If the mass is doubled, all
answers are doubled.
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5. The potential energy stored by the spring is given by U =<1 kx?, where k is the spring

constant and x is the displacement of the end of the spring from its position when the
spring is in equilibrium. Thus

2(251
k=20 2250 oo 10t Nm,

x* (0.075m)
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6. (a) The force of gravity is constant, so the work it does is given by W=F -d , where

F is the force and d is the displacement. The force is vertically downward and has
magnitude mg, where m is the mass of the snowball. The expression for the work reduces
to W= mgh, where h is the height through which the snowball drops. Thus

W =mgh=(1.50 kg)(9.80 m/s*)(12.5m)=184J .

(b) The force of gravity is conservative, so the change in the potential energy of the
snowball-Earth system is the negative of the work it does: AU =—-W =-184 ].

(c) The potential energy when it reaches the ground is less than the potential energy when
it is fired by |AUJ, so U =—184 J when the snowball hits the ground.
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7. The main challenge for students in this type of problem seems to be working out the
trigonometry in order to obtain the height of the ball (relative to the low point of the
swing) h = L — L cos @ (for angle & measured from vertical as shown in Fig. 8-34). Once
this relation (which we will not derive here since we have found this to be most easily
illustrated at the blackboard) is established, then the principal results of this problem
follow from Eq. 7-12 (for W, ) and Eq. 8-9 (for U).

(a) The vertical component of the displacement vector is downward with magnitude %, so
we obtain

w,= Fg d = mgh =mgL(1—cos )
= (5.00 kg)(9.80 m/s*)(2.00 m)(1—cos30°)=13.1]

(b) From Eq. 8-1, we have AU =W, =-mgL(1 —cos 8)=-13.1].

(c) With y = h, Eq. 8-9 yields U=mgL(1 —cos 8)=13.11J.

(d) As the angle increases, we intuitively see that the height / increases (and, less
obviously, from the mathematics, we see that cos € decreases so that 1 — cos @ increases),

so the answers to parts (a) and (c) increase, and the absolute value of the answer to part (b)
also increases.
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8. We use Eq. 7-12 for W, and Eq. 8-9 for U.

(a) The displacement between the initial point and Q has a vertical component of # — R
downward (same direction as Ii ), so (with 4 = 5R) we obtain

W,=F, -d=4mgR=4(3.20x10" kg)(9.80 m/s’)(0.12 m)=0.15J.

(b) The displacement between the initial point and the top of the loop has a vertical
component of 4 — 2R downward (same direction as }7; ), so (with 4 = 5R) we obtain

W,=F, -d=3mgR=3320x107 kg)(9.80 m/s*)(0.12 m)=0.117J.

(c) With y=h = 5R, at P we find
U =5mgR =5(3.20x10 kg)(9.80 m/s>)(0.12 m)=0.19 J .
(d) With y = R, at O we have
U =mgR = (3.20x107 kg)(9.80 m/s*)(0.12 m) = 0.038 J
(e) With y = 2R, at the top of the loop, we find
U =2mgR =2(3.20x107 kg)(9.80 m/s*)(0.12 m)=0.075J

(f) The new information (v, #0) is not involved in any of the preceding computations;
the above results are unchanged.
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9. We neglect any work done by friction. We work with SI units, so the speed is
converted: v =130(1000/3600) = 36.1 m/s.

(a) We use Eq. 8-17: Kr + Ur = K; + U; with U; = 0, Ur = mgh and K, = 0. Since
K = %mv2 , where v is the initial speed of the truck, we obtain

1

Vv (36.1mis)’

> =66.5m.
2g  2(9.8m/s%)

%va =mgh = h=
If L is the length of the ramp, then L sin 15° = 66.5 m so that L = (66.5 m)/sin 15° = 257
m. Therefore, the ramp must be about 2.6x 10> m long if friction is negligible.

(b) The answers do not depend on the mass of the truck. They remain the same if the
mass is reduced.

(c) If the speed is decreased, # and L both decrease (note that 4 is proportional to the
square of the speed and that L is proportional to /).
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10. We use Eq. 8-17, representing the conservation of mechanical energy (which neglects
friction and other dissipative effects).

(a) In the solution to exercise 2 (to which this problem refers), we found U; = mgy; = 196]
and Ur =mgy, =29.0]J (assuming the reference position is at the ground). Since K; = 0

in this case, we have
0+196 J=K,+29.0J

which gives Ky =167 J and thus leads to

e
v= s _ (2167 7) =12.9 m/s.
m 2.00 kg

(b) If we proceed algebraically through the calculation in part (a), we find Ky = — AU =
mgh where h = y; — yrand is positive-valued. Thus,

v= & =./2gh
m

as we might also have derived from the equations of Table 2-1 (particularly Eq. 2-16).
The fact that the answer is independent of mass means that the answer to part (b) is
identical to that of part (a), i.e.,v=12.9 m/s.

(c) IfK, # 0, then we find Kr= mgh + K; (where K; is necessarily positive-valued). This

represents a larger value for Ky than in the previous parts, and thus leads to a larger value
for v.
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11. (a) If K, is the kinetic energy of the flake at the edge of the bowl, K is its kinetic
energy at the bottom, Uj; is the gravitational potential energy of the flake-Earth system
with the flake at the top, and Uris the gravitational potential energy with it at the bottom,
then Ky+ Uy=K; + U..

Taking the potential energy to be zero at the bottom of the bowl, then the potential energy

at the top is U; = mgr where r = 0.220 m is the radius of the bowl and m is the mass of the
flake. K; = 0 since the flake starts from rest. Since the problem asks for the speed at the

.1 )
bottom, we write Emv2 for K. Energy conservation leads to

W,=F,-d=mgh=mgL(l1-cos0) .

The speed is v=4/2gr =2.08 m/s.

(b) Since the expression for speed does not contain the mass of the flake, the speed would
be the same, 2.08 m/s, regardless of the mass of the flake.

(c) The final kinetic energy is given by Ky= K; + U; — Uy. Since K; 1s greater than before,
Kris greater. This means the final speed of the flake is greater.
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12. We use Eq. 8-18, representing the conservation of mechanical energy (which neglects
friction and other dissipative effects).

(a) In the solution to Problem 4 we found AU = mgL as it goes to the highest point. Thus,
we have

AK+AU =0
K, —K,+mgL=0

which, upon requiring Kio, = 0, gives Ko = mgL and thus leads to

— 2I<0 —

Vo =

J28L =+/2(9.80 m/s?)(0.452 m) = 2.98 m/s .

m

(b) We also found in the Problem 4 that the potential energy change is AU = —mgL in
going from the initial point to the lowest point (the bottom). Thus,

AK+AU =0

K - K,—mgL =0

bottom

which, with Ky = mgL, leads to Kyottom = 2mgL. Therefore,

= [PRoion _ a7 = J4(9.80 m/s?)(0.452 m) = 4.21 /s .
m

Vbottom

(c) Since there is no change in height (going from initial point to the rightmost point),
then AU = 0, which implies AK = 0. Consequently, the speed is the same as what it was
initially,

vright

=v,=2.98 m/s.

(d) It is evident from the above manipulations that the results do not depend on mass.
Thus, a different mass for the ball must lead to the same results.
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13. We use Eq. 8-17, representing the conservation of mechanical energy (which neglects
friction and other dissipative effects).

(a) In Problem 4, we found U, = mgh (with the reference position at C). Referring again
to Fig. 8-33, we see that this is the same as Uy which implies that K4 = K, and thus that

vy=vo=17.0 m/s.
(b) In the solution to Problem 4, we also found U, =mgh/2. In this case, we have

K,+U,=K,;+U,
| | h
- +mgh =— + -
2]’7’1\/0 mg 2mvB mg(z)

which leads to

vy = V2 + gh =/(17.0 m/s)? +(9.80 m/s>)(42.0 m) = 26.5 m/s.

(c) Similarly,

Ve = V2 +2gh =+/(17.0 m/s)> +2(9.80 m/s>)(42.0 m) = 33.4 mys.
(d) To find the “final” height, we set K= 0. In this case, we have
Ky+Uy=K,+U,

1
Emvg +mgh=0+mgh,

2 2
which yields /1, =+ =42.0 m+-L0 S _ 567
' 2g 2(9.80 m/s”)

(e) It is evident that the above results do not depend on mass. Thus, a different mass for
the coaster must lead to the same results.
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14. We use Eq. 8-18, representing the conservation of mechanical energy. We choose the
reference position for computing U to be at the ground below the cliff; it is also regarded
as the “final” position in our calculations.

(a) Using Eq. 8-9, the initial potential energy is given by U; = mgh where h = 12.5 m and
m =1.50 kg . Thus, we have

K +U =K, +U,

1 1
—mv} +mgh=—mv’ +0
2 2

which leads to the speed of the snowball at the instant before striking the ground:

V= \/2(%7%\}1.2 +mghj =V’ + 2gh

m

where v; = 14.0 m/s is the magnitude of its initial velocity (not just one component of it).
Thus we find v=21.0 m/s.

(b) As noted above, v; is the magnitude of its initial velocity and not just one component
of it; therefore, there is no dependence on launch angle. The answer is again 21.0 m/s.

(c) It is evident that the result for v in part (a) does not depend on mass. Thus, changing
the mass of the snowball does not change the result for v.
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15. We take the reference point for gravitational potential energy at the position of the
marble when the spring is compressed.

(a) The gravitational potential energy when the marble is at the top of its motion is
U, =mgh , where h =20 m is the height of the highest point. Thus,

U, =(50x10" kg)(9.8m/s’)(20 m) =098 J.

(b) Since the kinetic energy is zero at the release point and at the highest point, then
conservation of mechanical energy implies AU, + AU, = 0, where AU; is the change in
the spring's elastic potential energy. Therefore, AU, = -AU, =—-0.98 J.

(c) We take the spring potential energy to be zero when the spring is relaxed. Then, our
result in the previous part implies that its initial potential energy is Us = 0.98 J. This must

be 1kx*, where k is the spring constant and x is the initial compression. Consequently,

20U, 2(098 1))

= = =31%x10> N/m =31 N/cm.
x> (0.080 m)* / /
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16. We use Eq. 8-18, representing the conservation of mechanical energy. The reference
position for computing U is the lowest point of the swing; it is also regarded as the
“final” position in our calculations.

(a) In the solution to problem 7, we found U = mgL(1 — cos 6) at the position shown in
Fig. 8-34 (which we consider to be the initial position). Thus, we have

K+U =K, +U,

0+mgL(1—cos8) = %mv2 +0

which leads to

v:\/2mgL(l—cos(9) :\/m_

m

Plugging in L = 2.00 m and 8= 30.0° we find v =2.29 m/s.

(b) It is evident that the result for v does not depend on mass. Thus, a different mass for
the ball must not change the result.
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17. We use Eq. 8-18, representing the conservation of mechanical energy (which neglects
friction and other dissipative effects). The reference position for computing U (and height
h) is the lowest point of the swing; it is also regarded as the “final” position in our
calculations.

(a) Careful examination of the figure leads to the trigonometric relation 4 = L — L cos 6
when the angle is measured from vertical as shown. Thus, the gravitational potential
energy is U = mgL(1 — cos &) at the position shown in Fig. 8-34 (the initial position).
Thus, we have

K,+U,=K,+U,

1 1
Emvé +mgL (1-cos8,) =Emv2 +0

which leads to

v= Jz{%mvg +mgL(1—cos€0)} = ng +2gL(1-cos6,)
m

= J(8.00 m/s)? +2(9.80 m/s*)(1.25 m)(1 — cos 40°) = 8.35 m/s.

(b) We look for the initial speed required to barely reach the horizontal position —
described by v, = 0 and 8= 90° (or 8=-90°, if one prefers, but since cos(—¢) = cos @, the
sign of the angle is not a concern).

K,+U,=K,+U,

1
Emvé +mgL (1-cos,)=0+mgL
which yields

v, =+[2gL cos 6, =+/2(9.80 m/s>)(1.25 m)cos 40° = 4.33 mys.

(c) For the cord to remain straight, then the centripetal force (at the top) must be (at least)

equal to gravitational force:

2
Vt

r

=mg = mv, =mgL

where we recognize that » = L. We plug this into the expression for the kinetic energy (at
the top, where 8= 180°).
K,+U,=K,+U,

%mvé +mgL (1-cos6,) :%mv,2 +mg(1—cos180°)

1 1
Emvg +mgL (1-cosf,) = E(mgL) +mg(2L)
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which leads to

Vo :\/gL(3+ZCos 6,) = \/(9.80 m/s”)(1.25 m)(3+2cos40°) = 7.45 m/s.

(d) The more initial potential energy there is, the less initial kinetic energy there needs to
be, in order to reach the positions described in parts (b) and (c). Increasing 6 amounts to

increasing U, so we see that a greater value of ) leads to smaller results for vy in parts (b)
and (c).
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18. We place the reference position for evaluating gravitational potential energy at the
relaxed position of the spring. We use x for the spring's compression, measured positively
downwards (so x > 0 means it is compressed).

(a) With x =0.190 m, Eq. 7-26 gives

W :—%kxz =-722]=-721]

N

for the work done by the spring force. Using Newton's third law, we see that the work
done on the spring is 7.2 J.

(b) As noted above, W, =-7.2 J.
(c) Energy conservation leads to
K+U =K, +U,

1
mgh, = —mgx+5 kx?

which (with m = 0.70 kg) yields 4y = 0.86 m.

(d) With a new value for the height hj =2k, =172 m, we solve for a new value of x
using the quadratic formula (taking its positive root so that x > 0).

_mg+ \/(mg)2 +2mgkh;
- k

1
mgh(;:—mgx+5kx2 = X

which yields x = 0.26 m.
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19. (a) At Q the block (which is in circular motion at that point) experiences a centripetal
acceleration v*/R leftward. We find v* from energy conservation:

K,+U,=K,+U,
1
0+ mgh =5mv2 +mgR

Using the fact that 2 = 5R, we find mv* = 8mgR. Thus, the horizontal component of the
net force on the block at O is

F = mv*/R = 8mg=8(0.032 kg)(9.8 m/s*)=2.5 N.
and points left (in the same direction as a ).

(b) The downward component of the net force on the block at Q is the downward force of
gravity

F = mg =(0.032 kg)(9.8 m/s*)= 0.31 N.

(c) To barely make the top of the loop, the centripetal force there must equal the force of
gravity:
2

my,

=mg = mv, =mgR

This requires a different value of /4 than was used above.
K,+U,=K, +U,

0+mgh= %mvf +mgh,

mgh = %(ng) +mg(2R)

Consequently, 2 =2.5R =(2.5)(0.12 m) = 0.30 m.

(d) The normal force Fy, for speeds v, greater than ,/gR (which are the only
possibilities for non-zero Fy — see the solution in the previous part), obeys

2
my

F, = Rt -mg
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from Newton's second law. Since v/ isrelatedto h  Fy
by energy conservation .

K,+U,=K +U, :ghz%szngR

t

then the normal force, as a function for % (so long as .
h = 2.5R — see solution in previous part), becomes

1
M.l ni na 114 HE! LR 0L

_ 2mgh

F, 2

Smg

Thus, the graph for # = 2.5R consists of a straight line of positive slope 2mg/R (which can
be set to some convenient values for graphing purposes).

Note that for 4 < 2.5R, the normal force is zero.
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20. (a) With energy in Joules and length in meters, we have

AU =U(x)-U(0) =~ (6x'~12)ax" .
Therefore, with U (0) = 27 J, we obtain U(x) (written simply as U) by integrating and
rearranging:

U=27+12x-3x".

(b) We can maximize the above function by working through the dU /dx =0 condition,
or we can treat this as a force equilibrium situation — which is the approach we show.

F=0=6x,-12=0

Thus, x., = 2.0 m, and the above expression for the potential energy becomes U = 39 J.

(c) Using the quadratic formula or using the polynomial solver on an appropriate
calculator, we find the negative value of x for which U= 0 to be x =—1.6 m.

(d) Similarly, we find the positive value of x for which U= 0to be x = 5.6 m
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21. (a) As the string reaches its lowest point, its original potential energy U = mgL
(measured relative to the lowest point) is converted into kinetic energy. Thus,

mng%mv2 =>v=,2gL .

With L = 1.20 m we obtain v =4.85 m/s.

(b) In this case, the total mechanical energy is shared between kinetic +mv; and

potential mgy,. We note that y, = 2r where r = L — d = 0.450 m. Energy conservation
leads to

1
mgL = Emvb2 +mgy,

which yields v, =/2gL—2g(2r) =2.42 m/s .
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22. We denote m as the mass of the block, # = 0.40 m as the height from which it dropped
(measured from the relaxed position of the spring), and x the compression of the spring
(measured downward so that it yields a positive value). Our reference point for the
gravitational potential energy is the initial position of the block. The block drops a total
distance /4 + x, and the final gravitational potential energy is —mg(h + x). The spring

potential energy is Lkx® in the final situation, and the kinetic energy is zero both at the
beginning and end. Since energy is conserved

K +U, :Kf+Uf

0=—mg(h+x)+%kx2

which is a second degree equation in x. Using the quadratic formula, its solution is

X

_mg + \/(mg)2 +2mghk
. .

Now mg =19.6 N, h = 0.40 m, and &k =1960 N/m, and we choose the positive root so
that x > 0.

B 19.6+\/19.62 +2(19.6)(0.40)(1960)
B 1960

=0.10m.

X
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23. Since time does not directly enter into the energy formulations, we return to Chapter
4 (or Table 2-1 in Chapter 2) to find the change of height during this # = 6.0 s flight.

1
Ayzvoyt—agt

This leads to Ay =-32 m. Therefore AU =mgAy=-318J=-3.2x107 J.
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24. From Chapter 4, we know the height # of the skier's jump can be found from
v; =0=v,, —2gh where v, = v, sin 28° is the upward component of the skier's “launch

velocity.” To find vy we use energy conservation.

(a) The skier starts at rest y = 20 m above the point of “launch” so energy conservation
leads to

mgy=%mv2 =v=.2gy =20 m/s

which becomes the initial speed v, for the launch. Hence, the above equation relating 4 to
vo yields

. 0\2
o (vsin28)
2g

(b) We see that all reference to mass cancels from the above computations, so a new
value for the mass will yield the same result as before.
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25. (a) To find out whether or not the vine breaks, it is sufficient to examine it at the
moment Tarzan swings through the lowest point, which is when the vine — if it didn't
break — would have the greatest tension. Choosing upward positive, Newton's second

law leads to
2

T—mgzmv—
r

where » = 18.0 m and m=W/g=688/98=702 kg. We find the v* from energy
conservation (where the reference position for the potential energy is at the lowest point).

mgh = %mv2 = v’ = 2gh
where /4 = 3.20 m. Combining these results, we have

T=mg+m@=mg(l+%j
r r

which yields 933 N. Thus, the vine does not break.

(b) Rounding to an appropriate number of significant figures, we see the maximum
tension is roughly 9.3x 10> N.
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26. (a) We take the reference point for gravitational energy to be at the lowest point of the
swing. Let @ be the angle measured from vertical. Then the height y of the pendulum
“bob” (the object at the end of the pendulum, which i this problem is the stone) is given
by L(1 —cos@) =y . Hence, the gravitational potential energy is

mgy =mgL(1 —cos@).

When 8= 0° (the string at its lowest point) we are told that its speed is 8.0 m/s; its kinetic
energy there is therefore 64 J (using Eq. 7-1). At 8= 60° its mechanical energy is

1
Ereen= 5 mv? + mgL(1 —cos@) .

Energy conservation (since there is no friction) requires that this be equal to 64 J.
Solving for the speed, we find v =15.0 m/s.

(b) We now set the above expression again equal to 64 J (with @ being the unknown) but

with zero speed (which gives the condition for the maximum point, or “turning point”
that it reaches). This leads to Gn.x = 79°.

(c) As observed in our solution to part (a), the total mechanical energy is 64 J.
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27. We convert to SI units and choose upward as the +y direction. Also, the relaxed
position of the top end of the spring is the origin, so the initial compression of the spring
(defining an equilibrium situation between the spring force and the force of gravity) is yo
=—0.100 m and the additional compression brings it to the position y; = —-0.400 m.

(a) When the stone is in the equilibrium (a = 0) position, Newton's second law becomes

F

net

=ma

F,

spring

—k(~0.100) — (8.00) (9.8) = 0

-mg=0

where Hooke's law (Eq. 7-21) has been used. This leads to a spring constant equal to k£ =
784 N/m.

(b) With the additional compression (and release) the acceleration is no longer zero, and
the stone will start moving upwards, turning some of its elastic potential energy (stored in
the spring) into kinetic energy. The amount of elastic potential energy at the moment of
release is, using Eq. 8-11,

U= % ky? = %(784) (—=0.400)*> = 62.7 J.

(c) Its maximum height y, is beyond the point that the stone separates from the spring
(entering free-fall motion). As usual, it is characterized by having (momentarily) zero
speed. If we choose the y; position as the reference position in computing the
gravitational potential energy, then

K +U =K, +U,

0+%ky12=0+mgh

where & = y, — y; is the height above the release point. Thus, mgh (the gravitational
potential energy) is seen to be equal to the previous answer, 62.7 J, and we proceed with
the solution in the next part.

(d) We find 4 = ky? /2mg =0.800 m, or 80.0 cm.
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28. We take the original height of the box to be the y = 0 reference level and observe that,
in general, the height of the box (when the box has moved a distance d downhill) is
y=—dsin40°.

(a) Using the conservation of energy, we have

1 1
K +U, :K+U:>0+O=Emv2+mgy+5kd2.

Therefore, with d = 0.10 m, we obtain v =0.81 m/s.

(b) We look for a value of d # 0 such that K =0.
K +U, =K+U:>O+O=O+mgy+%kd2.

Thus, we obtain mgd sin40° = L kd® and find d=0.21 m.

(c) The uphill force is caused by the spring (Hooke's law) and has magnitude kd = 25.2 N.
The downhill force is the component of gravity mgsin40°= 12.6 N. Thus, the net force
on the box is (25.2 — 12.6) N = 12.6 N uphill, with a = F/m =(12.6 N)/(2.0 kg) = 6.3 m/s.

(d) The acceleration is up the incline.
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29. The reference point for the gravitational potential energy U, (and height 4) is at the
block when the spring is maximally compressed. When the block is moving to its highest
point, it is first accelerated by the spring; later, it separates from the spring and finally
reaches a point where its speed v, is (momentarily) zero. The x axis is along the incline,
pointing uphill (so x¢ for the initial compression is negative-valued); its origin is at the
relaxed position of the spring. We use SI units, so £ = 1960 N/m and xo = —0.200 m.

(a) The elastic potential energy is %kxé =3921J.

(b) Since initially U, = 0, the change in U is the same as its final value mgh where m =
2.00 kg. That this must equal the result in part (a) is made clear in the steps shown in the
next part. Thus, AU, = Uy, =39.2 J.
(c) The principle of mechanical energy conservation leads to
K,+U,=K,+U,
0+ % kx; =0+mgh

which yields 2 = 2.00 m. The problem asks for the distance along the incline, so we have
d = h/sin 30° =4.00 m.
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30. From the slope of the graph, we find the spring constant

k _AF 010N/cm=10N/m.
Ax

(a) Equating the potential energy of the compressed spring to the kinetic energy of the
cork at the moment of release, we have

lloc2 :lmv2 :>v=x\/E
2 2 m

which yields v =2.8 m/s for m = 0.0038 kg and x = 0.055 m.

(b) The new scenario involves some potential energy at the moment of release. With d =
0.015 m, energy conservation becomes

1 1 1
— k= —mv' +—kd> =>v= E(xz—dz)
2 2 2 m

which yields v=2.7 m/s.
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31. We refer to its starting point as 4, the point where it first comes into contact with the
spring as B, and the point where the spring is compressed |x| = 0.055 m as C. Point C is
our reference point for computing gravitational potential energy. Elastic potential energy
(of the spring) is zero when the spring is relaxed. Information given in the second
sentence allows us to compute the spring constant. From Hooke's law, we find

_E_ 270 N
x 0.02m

=1.35x10" N/m.

(a) The distance between points 4 and B is F, and we note that the total sliding distance
l+ |x| is related to the initial height % of the block (measured relative to C) by

———=sin &
€+|x|

where the incline angle #is 30°. Mechanical energy conservation leads to

K,+U,=K.+U,_

O+mgh=0+%kx2

which yields
2 (1.35%10* N/m)(0.055 m)’
po R _ (1.35x10° N/m)(0.055 m) ~0.174 m.
2mg 2(12 kg) (9.8 m/s?)
Therefore,
=t 20D s,

sin 30° sin 30°

(b) From this result, we find /=0.35-0.055=0.29 m , which means that
Ay =—/sin@=-0.15 m in sliding from point 4 to point B. Thus, Eq. 8-18 gives

AK+AU =0

%mvé +mgAh=0

which yields v, = \/-2gAh = /—(9.8)(—0.15) =1.7 m/s .
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32. The work required is the change in the gravitational potential energy as a result of the
chain being pulled onto the table. Dividing the hanging chain into a large number of
infinitesimal segments, each of length dy, we note that the mass of a segment is (m/L) dy
and the change in potential energy of a segment when it is a distance |y| below the table
top is

dU = (m/L)gly| dy =—(m/L)gy dy

since y is negative-valued (we have +y upward and the origin is at the tabletop). The total
potential energy change is

__mg o _1mg 2 _
AU = 7 7L/4ydy—2 7 (L/4)* =mgL/32.

The work required to pull the chain onto the table is therefore

W=AU=mgL/32 = (0.012 kg)(9.8 m/s?)(0.28 m)/32 = 0.0010 J.
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33. All heights / are measured from the lower end of the incline (which is our reference
position for computing gravitational potential energy mgh). Our x axis is along the incline,
with +x being uphill (so spring compression corresponds to x > 0) and its origin being at
the relaxed end of the spring. The height that corresponds to the canister's initial position
(with spring compressed amount x = 0.200 m) is given by #; = (D + x) sin 6, where
0=37°.

(a) Energy conservation leads to
. 1., 1 , .
K +U =K,+U, = O+mg(D+x)sm¢9+5kx =5mv2+ngs1n9

which yields, using the data m =2.00 kg and £ = 170N/m,

v, = \/ngsin¢9+ Joc® /m = 2.40m/s .

(b) In this case, energy conservation leads to

K +U =K,+U,

0+mg(D+x)sin¢9+%kx2 :%m\@2 +0

which yields v, =+/2g(D+x)sin@+kx*/m =4.19 m/s.
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34. The distance the marble travels is determined by its initial speed (and the methods of
Chapter 4), and the initial speed is determined (using energy conservation) by the original
compression of the spring. We denote / as the height of the table, and x as the horizontal

distance to the point where the marble lands. Then x = v t and h=21gt’ (since the
vertical component of the marble's “launch velocity” is zero). From these we find
x=V,+/2 h/g. We note from this that the distance to the landing point is directly

proportional to the initial speed. We denote vy ; be the initial speed of the first shot and D,
=(2.20 — 0.27) m = 1.93 m be the horizontal distance to its landing point; similarly, vy, is
the initial speed of the second shot and D = 2.20 m is the horizontal distance to its
landing spot. Then

D

Voo
= = Voo =77"Vu
Voo D D,

When the spring is compressed an amount /, the elastic potential energy is 1 k¢>. When

the marble leaves the spring its kinetic energy is 1mv;. Mechanical energy is conserved:

Lmv; =1k(*, and we see that the initial speed of the marble is directly proportional to
the original compression of the spring. If 7 is the compression for the first shot and 7,
is the compression for the second, then v,, =(/,/¢,)v,, . Relating this to the previous

result, we obtain

(,==1 =

D ' (2.20 m

= (1.10 cm) =1.25 cm.
1.93 m
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35. Consider a differential element of length dx at a distance x from one end (the end
which remains stuck) of the cord. As the cord turns vertical, its change in potential
energy is given by

dU =—(Adx)gx
where A=m/h is the mass/unit length and the negative sign indicates that the potential
energy decreases. Integrating over the entire length, we obtain the total change in the

potential energy:

AU = [dU =~ Agrdx = —%lghz - —%mgh.

With m=15 g and A =25 cm, we have AU =-0.018J.
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36. LetF,, be the normal force of the ice on him and m is his mass. The net inward force

is mg cos @— Fy and, according to Newton's second law, this must be equal to mv*/R,
where v is the speed of the boy. At the point where the boy leaves the ice Fy =0, so g cos
0= v*/R. We wish to find his speed. If the gravitational potential energy is taken to be
zero when he is at the top of the ice mound, then his potential energy at the time shown is

U=-mgR(1 —cos 8).

He starts from rest and his kinetic energy at the time shown is1mv®. Thus conservation
of energy gives
0=1mv’ —mgR(1-cosb),

or vV = 2gR(1 — cos 6). We substitute this expression into the equation developed from
the second law to obtain g cos 8= 2g(1 — cos ). This gives cos €= 2/3. The height of
the boy above the bottom of the mound is

h=Rcos 6=2R/3=2(13.8 m)/3=9.20 m.
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37. (a) The (final) elastic potential energy is

] 1
U=5 kx? = 5 (431 N/m)(0.210 m)> =9.50 J.

Ultimately this must come from the original (gravitational) energy in the system mgy
(where we are measuring y from the lowest “elevation” reached by the block, so y = (d +
x)sin(30°). Thus,

mg(d + x)sin(30°) = 9.50 J = d=0.396m.
(b) The block is still accelerating (due to the component of gravity along the incline,
mgsin(30°)) for a few moments after coming into contact with the spring (which exerts
the Hooke’s law force kx), until the Hooke’s law force is strong enough to cause the
block to being decelerating. This point is reached when

kx = mgsin30°

which leads to x = 0.0364 m = 3.64 cm; this is long before the block finally stops (36.0
cm before it stops).
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38. (a) The force at the equilibrium position r = r¢q 1S

dU 124 6B
F:_d_r—l” = ——5 t—5=0
r T eq req req

which leads to the result
24\ AV
. =(_j 112 (_j
d B B

(b) This defines a minimum in the potential energy curve (as can be verified either by a
graph or by taking another derivative and verifying that it is concave upward at this
point), which means that for values of r slightly smaller than r.q the slope of the curve is
negative (so the force is positive, repulsive).

(c) And for values of r slightly larger than 7.4 the slope of the curve must be positive (so
the force is negative, attractive).
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39. From Fig. 8-50, we see that at x = 4.5 m, the potential energy is U; = 15 J. If the
speed is v = 7.0 m/s, then the kinetic energy is

Ki=mv*/2 = (0.90 kg)(7.0 m/s)*/2 =22 .
The total energy is E,= U 1+ K; =(15+22)J=371J.

(a) At x = 1.0 m, the potential energy is U, = 35 J. From energy conservation, we have
K>=2.0J > 0. This means that the particle can reach there with a corresponding speed

v, = \/2K2 = 220D s,
m 0.90 kg

(b) The force acting on the particle is related to the potential energy by the negative of the
slope:

F o AU
Ax
From the figure we have F, = SEEE Il R +10 N.
2m-4m

(c) Since the magnitude . > 0, the force points in the +x direction.

(d) At x = 7.0m, the potential energy is U; =45 J which exceeds the initial total energy E.
Thus, the particle can never reach there. At the turning point, the kinetic energy is zero.
Between x = 5 and 6 m, the potential energy is given by

U(x)=15+30(x-5), 5<x<6.
Thus, the turning point is found by solving 37 =15+30(x—5), which yields x =5.7 m.

(e) At x =5.0 m, the force acting on the particle is

Fx:_AU:_(45—15) J:_30 N
Ax (6-5) m

The magnitude is | F. =30 N.

(f) The fact that F_< 0indicated that the force points in the —x direction.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

40. In this problem, the mechanical energy (the sum of K and U) remains constant as the
particle moves.

(a) Since mechanical energy is conserved, U, + K, =U ,+ K ,, the kinetic energy of the
particle in region 4 (3.00 m<x<4.00 m) is

K,=U,-U,+K,=12.01-9.00 T+4.00 J=7.00 7.

With K, =mv’/2, the speed of the particle at x =3.5 m (within region 4) is

v, = \/ZKA = [20:900) _ g 37 s,
m 0.200 kg

(b) At x=65m, U=0 and K=U,+K,;=12.0J+4.00J=16.0J by mechanical
energy conservation. Therefore, the speed at this point is

2K 2(16.0J)
v=,|—= |———=12.6 m/s. P
\/m \/0.200 kg (8.0 -24.1;?1‘1

/
(c) At the turning point, the speed of the particle is zero. Let the i

: ;
position of the right turning point be x,. From the figure shown on the & L ‘[:'_.__!'

i
£
4

16.00J-0 24.00 J-16.00J S
= = X, =7.67m. ERIRLRERY
X, —7.00 m 8.00 m—x,

right, we find x, tobe

(d) Let the position of the left turning point bex,. From the figure 1.4 m. 2o

shown, we find x, tobe q"-.
16.00J—-20.001 9.00 J—16.00 J . 16000
= = x, =1.73 m. .
x, —1.00 m 3.00 m—x,
\
N

A, AR
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41.(a) The energy atx=50mis E=K+U=2.0J-57J=-3.71.

(b) A plot of the potential energy curve (SI units understood) and the
energy E (the horizontal line) is shown for 0 <x < 10 m.

(i

_4_ l'.."'-. .-*‘f'x}

-5 ] R 7
] Ny o

& —— X
i 2 4 f H 1t

(c) The problem asks for a graphical determination of the turning points, which are the
points on the curve corresponding to the total energy computed in part (a). The result for
the smallest turning point (determined, to be honest, by more careful means) is x = 1.3 m.

(d) And the result for the largest turning point is x = 9.1 m.

(e) Since K = E — U, then maximizing K involves finding the minimum of U. A graphical
determination suggests that this occurs at x = 4.0 m, which plugs into the expression
E—-U=-37—(-4xe™) to give K=2.16] = 2.2 J. Alternatively, one can measure
from the graph from the minimum of the U curve up to the level representing the total
energy E and thereby obtain an estimate of K at that point.

(f) As mentioned in the previous part, the minimum of the U curve occurs at x = 4.0 m.

(g) The force (understood to be in newtons) follows from the potential energy, using Eq.
8-20 (and Appendix E if students are unfamiliar with such derivatives).

=
dx

(4—x)e"

(h) This revisits the considerations of parts (d) and (e) (since we are returning to the
minimum of U(x)) — but now with the advantage of having the analytic result of part (g).
We see that the location which produces /"= 0 is exactly x = 4.0 m.
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42. Since the velocity is constant, @ =0 and the horizontal component of the worker's
push F cos € (where 8= 32°) must equal the friction force magnitude f; = i Fn. Also, the
vertical forces must cancel, implying

/4

applied

= (8.0N)(0.70m) = 5.6 J

which is solved to find =71 N.

(a) The work done on the block by the worker is, using Eq. 7-7,

W = Fdcos@=(71N)(9.2 m)cos32°=5.6x10"]J .

(b) Since fi = 4 (mg + F sin @), we find AE, = f,d = (60N)(9.2m)=5.6x10"J.
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43. (a) Using Eq. 7-8, we have

Wy iea = (8-0N)(0.70m) = 5.6.

(b) Using Eq. 8-31, the thermal energy generated is

AE, = f,d =(5.0N)(0.70m) =3.51.
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44. (a) The work is W= Fd = (35.0 N)(3.00 m) = 105 J.

(b) The total amount of energy that has gone to thermal forms is (see Eq. 8-31 and Eq.
6-2)

AEy = 1 mgd = (0.600)(4.00 kg)(9.80 m/s%)(3.00 m) = 70.6 J.
I£ 40.0 J has gone to the block then (70.6 — 40.0) J = 30.6 J has gone to the floor.

(c) Much of the work (105 J ) has been “wasted” due to the 70.6 J of thermal energy
generated, but there still remains (105 — 70.6 ) J = 34.4 J which has gone into increasing
the kinetic energy of the block. (It has not gone into increasing the potential energy of
the block because the floor is presumed to be horizontal.)
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45. (a) The work done on the block by the force in the rope is, using Eq. 7-7,

W = Fdcos@=(7.68 N)(4.06m)cos15.0°=30.1J.

(b) Using f for the magnitude of the kinetic friction force, Eq. 8-29 reveals that the
increase in thermal energy is

AE, = fd =(7.42N)(4.06m) = 30.11.

(c) We can use Newton's second law of motion to obtain the frictional and normal forces,
then use i = f/F to obtain the coefficient of friction. Place the x axis along the path of
the block and the y axis normal to the floor. The x and the y component of Newton's
second law are

X: Fcos8—f =0

y: Fy+Fsin 8—-mg=0,

where m is the mass of the block, F is the force exerted by the rope, and € is the angle
between that force and the horizontal. The first equation gives

f=Fcos 8=(7.68 N)cos15.0°=7.42 N
and the second gives
Fy=mg—Fsin 8= (3.57 kg)(9.8 m/s”) — (7.68 N)sin15.0°=33.0 N.

Thus,

p =L TAZN 55,
FN

33.0N
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46. Equation 8-33 provides AEy = —AEne for the energy “lost” in the sense of this
problem. Thus,

AE, = %m(vf —vi)+mg(y,—y,)= %(60 kg)[(24 m/s)’ — (22 m/s)* ]+ (60 kg)(9.8 m/s*)(14 m)
=1.1x10* J.

That the angle of 25° is nowhere used in this calculation is indicative of the fact that
energy is a scalar quantity.
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47. (a) We take the initial gravitational potential energy to be U; = 0. Then the final
gravitational potential energy is Ur= —mgL, where L is the length of the tree. The change
is

U, -U,=-mgL=—(25kg)(9.8 m/s’)(12 m) =-2.9x10 J.

(b) The kinetic energy is K :%mv2 = %(25 kg)(5.6 m/s)* =3.9x10° J.

(c) The changes in the mechanical and thermal energies must sum to zero. The change in
thermal energy is AEy = fL, where f is the magnitude of the average frictional force;
therefore,

AK+AU _ 3.9%10% J-2.9x10’ J

L 12m

f= =2.1x10* N
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48. We work this using the English units (with g = 32 ft/s), but for consistency we
convert the weight to pounds

11b
=(9.0)o
mg =(.0) Z(1602

): 0.561b

which implies m = 0.018 1b - s*/ft (which can be phrased as 0.018 slug as explained in
Appendix D). And we convert the initial speed to feet-per-second

5280 ft/mi

y, = (818 mi/h) [ 3600 ok

]: 120 ft/s

or a more “direct” conversion from Appendix D can be used. Equation 8-30 provides
AEy = —AE . for the energy “lost” in the sense of this problem. Thus,

AE, :%m(vf V) +mg(y,~y,) :%(0.018)(1202 ~110*)+0=20 ft-Ib.
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49. We use SI units so m = 0.075 kg. Equation 8-33 provides AEy, = —AEne for the
energy “lost” in the sense of this problem. Thus,

1
A, = Lz =) e a3,

= %(0.075 kg)[(12 m/s)* — (10.5 m/s)*]+ (0.075 kg)(9.8 m/s>)(1.1 m—2.1 m)
=0.53 1.
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50. We use Eq. 8-31 to obtain

AE, = f,d =(10N)(5.0m)=50J
and Eq. 7-8 to get

W=Fd=(2.0N)5.0m)=101J.
Similarly, Eq. 8-31 gives
W=AK+AU +AE,
10=35+AU +50

which yields AU =—-75 J. By Eq. 8-1, then, the work done by gravity is W=-AU =75 .
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51. (a) The initial potential energy is
U, =mgy, = (520 kg) (9.8m/s’) (300 m) =1.53%x10° J

where +y is upward and y = 0 at the bottom (so that Uy = 0).

(b) Since fi = x Fn = i mg cos@ we have AE, = f,d = y,mgd cos@ from Eq. 8-31.
Now, the hillside surface (of length d = 500 m) is treated as an hypotenuse of a 3-4-5
triangle, so cos 8= x/d where x = 400 m. Therefore,

AE, = ,ukmgdg = u,mgx = (025)(520)(9.8) (400) = 5.1x10° J .

(c) Using Eq. 8-31 (with W= 0) we find

K, =K +U,-U, -AE,
=0+153x10°—0-5.1x10°
=0+1.02%x10°J.

(d) From K, = mv* /2, we obtain v =63 m/s.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

52. Energy conservation, as expressed by Eq. 8-33 (with W = 0) leads to
1
AE, =K,-K,+U,-U, = fd :0—0+5kx2 -0

= u,mgd :%(ZOON/m)(O.ISm)Z = 1,(2.0kg)(9.8m/s*)(0.75m) =2.25]

which yields g = 0.15 as the coefficient of kinetic friction.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

53. Since the valley is frictionless, the only reason for the speed being less when it
reaches the higher level is the gain in potential energy AU = mgh where 4 = 1.1 m.
Sliding along the rough surface of the higher level, the block finally stops since its
remaining kinetic energy has turned to thermal energy AE, = f,d = umgd , where
1 =0.60. Thus, Eq. 8-33 (with W = 0) provides us with an equation to solve for the
distance d:

K, = AU + AE, = mg (h-+ ud)

where K, =mv’/2 and v;= 6.0 m/s. Dividing by mass and rearranging, we obtain

2
d=2 Mo,
2ug u
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54. (a) An appropriate picture (once friction is included) for this problem is Figure 8-3 in
the textbook. We apply equation 8-31, AEy, = fy d, and relate initial kinetic energy K; to
the "resting" potential energy U,:

1
K+ U =fid+K +U = 200J+0=fd+0+ Jkd’

where f; = 10.0 N and £ = 400 N/m. We solve the equation for d using the quadratic
formula or by using the polynomial solver on an appropriate calculator, with d = 0.292 m
being the only positive root.

(b) We apply equation 8-31 again and relate U, to the "second" kinetic energy K it has at
the unstretched position.

1
K +U=fid+K+U = Skd=fd+K+0

Using the result from part (a), this yields K, = 14.2 J.
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55. (a) The vertical forces acting on the block are the normal force, upward, and the force
of gravity, downward. Since the vertical component of the block's acceleration is zero,
Newton's second law requires Fy = mg, where m is the mass of the block. Thus f'= 1 Fx
= wrmg. The increase in thermal energy is given by AEy, = fd = wmgD, where D is the
distance the block moves before coming to rest. Using Eq. 8-29, we have

AE,, =(025)(35kg)(9.8m/s”) (7.8 m) = 67J.

(b) The block has its maximum kinetic energy Kmax just as it leaves the spring and enters
the region where friction acts. Therefore, the maximum kinetic energy equals the thermal
energy generated in bringing the block back to rest, 67 J.

(c) The energy that appears as kinetic energy is originally in the form of potential energy

: . 1 : : .
in the compressed spring. Thus, K =U, = Ekx2 , where £ is the spring constant and x is

the compression. Thus,

2K, 2(677)

x = | = 046m.
k 640N/m
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56. We look for the distance along the incline d which is related to the height ascended by
Ah = d sin 6. By a force analysis of the style done in Ch. 6, we find the normal force has
magnitude Fy = mg cos @ which means f; = (4 mg cos6. Thus, Eq. 8-33 (with W = 0)
leads to

0=K,-K,+AU+AE,
=0- K, + mgd sin 0+ u,mgd cos@

which leads to

d= K, = 128 =43m.

mg(sin@+ p, cosd) (4.0)(9.8)(sin30°+0.30cos30°)
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=0. At the maximum height /4
=mgh. The

57. Before the launch, the mechanical energy isAE

mech,0

where the speed of the beetle vanishes, the mechanical energy is AE

mech,1

change of the mechanical energy is related to the external force by

AE

mech —

AE

mech, 1 -

AE =mgh=F,_ dcosg,

mech,0 avg
where Fj,, is the average magnitude of the external force on the beetle.

(a) From the above equation, we have

mgh _ (4.0x10™° kg)(9.80 m/s>)(0.30 m)

F, = = =1.5%10 N.
¢ dcos¢ (7.7%107 m)(cos 0°)

(b) Dividing the above result by the mass of the beetle, we obtain

F. h (0.30 m)

= = = =3.8x10°g.
m dcos¢g (7.7%x107* m)(cos 0°) & &
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58. (a) Using the force analysis shown in Chapter 6, we find the normal force
F, =mgcos@ (where mg =267 N) which means f; = i, F, =ty mg cos 6. Thus, Eq. 8-31
yields

AE, = f.d = t,mgd cos8=(0.10)(267)(6.1)cos20°=15x10"J.

(b) The potential energy change is
AU = mg(~d sin 6) = (267 N)(— 6.1 m) sin 20° =—-5.6 x 10 J.

The initial kinetic energy is

1, 1( 267N

K =— ~ 1(0.457m/s*) =2.8].
9.8m/s

, my, =—
2 2
Therefore, using Eq. 8-33 (with W = 0), the final kinetic energy is

K, =K, —AU-AE, =28—-(-56%10")=15x10° =4.1x10°J.

Consequently, the final speed is v, = 2K, /m =55 m/s.
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59. (a) Withx=0.075 mand k =320N/m, Eq.7-26 yields W, =—1k*=-0901J. For

later reference, this is equal to the negative of AU.
(b) Analyzing forces, we find Fiy = mg which means f, = ¢, F,, = u,mg . With d = x, Eq.
8-31 yields

AE, = f,d = u,mgx =(025)(2.5)(9.8)(0.075) = 046 J.

(c) Eq. 8-33 (with W = 0) indicates that the initial kinetic energy is

K =AU +AE, =090+046=1361]

which leads to v, = /2K, /m =10 m/s.
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60. This can be worked entirely by the methods of Chapters 2—6, but we will use energy
methods in as many steps as possible.

(a) By a force analysis of the style done in Ch. 6, we find the normal force has magnitude
Fy=mg cos 6@ (where 8= 40°) which means f; = u,F, = txmg cos 8 where t = 0.15.
Thus, Eq. 8-31 yields

AEw = fird = e mgd cos 6.

Also, elementary trigonometry leads us to conclude that AU = mgd sin 6. Eq. 8-33 (with
W =0 and Ky= 0) provides an equation for determining d:

K, =AU +AE,

%mvf =mgd (sin6+ u, cosb)

where v, =14m/s. Dividing by mass and rearranging, we obtain

2
V.

d= — =0.13m.
2g(sin@+ u, cosB)

(b) Now that we know where on the incline it stops (d' = 0.13 + 0.55 = 0.68 m from the
bottom), we can use Eq. 8-33 again (with W = 0 and now with K; = 0) to describe the
final kinetic energy (at the bottom):

K, =-AU-AE,

%mv2 =mgd’(sin@— u, cos6)

which — after dividing by the mass and rearranging — yields

v :\/ng'(siné?—,uk cosf) =2.7m/s.

(c) In part (a) it is clear that d increases if 4 decreases — both mathematically (since it is
a positive term in the denominator) and intuitively (less friction — less energy “lost”). In
part (b), there are two terms in the expression for v which imply that it should increase if
M were smaller: the increased value of d' = dy + d and that last factor sin € — 4 cos €
which indicates that less is being subtracted from sin @ when g4 is less (so the factor itself
increases in value).
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61. (a) The maximum height reached is 4. The thermal energy generated by air resistance

as the stone rises to this height is AEy, = fh by Eq. 8-31. We use energy conservation in
the form of Eq. 8-33 (with W = 0):

K, +U,+AE, =K, +U,

and we take the potential energy to be zero at the throwing point (ground level). The
initial kinetic energy is K, = Emvo2 , the initial potential energy is U; = 0, the final kinetic
energy is Kr= 0, and the final potential energy is Uy = wh, where w = mg is the weight of

the stone. Thus, wh + fh = %mvé , and we solve for the height:

2 2
my, _ Vo

T2wr /) 2g(+fIw)

Numerically, we have, with m = (5.29 N)/(9.80 m/s*)=0.54 kg,

(20.0 m/s)’

_ . =19.4 m/s.
2(9.80 m/s>)(1+0.265/5.29)

(b) We notice that the force of the air is downward on the trip up and upward on the trip
down, since it is opposite to the direction of motion. Over the entire trip the increase in

. o . 1 .
thermal energy is AEy, = 2fh. The final kinetic energy is K, =Emv2 , where v is the

speed of the stone just before it hits the ground. The final potential energy is Uy= 0. Thus,
using Eq. 8-31 (with W= 0), we find

1, 1,
—mv +2fth=—mv;.
2 s 2

We substitute the expression found for /4 to obtain

2
2 /v, 1, 2
=—my  ——my,

2¢(1+ f/w) 2 2
which leads to

cw—f

w4+ f

2 _ 2 2fV02 =2 = 2fv§ =12 1_i
mg(l+f/w) " owd+fIw) L wtf

where w was substituted for mg and some algebraic manipulations were carried out.
Therefore,

v=1, WS 20,0 ms) [222NZ0265N g6 s
w+ f 529 N+0.265N
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62. In the absence of friction, we have a simple conversion (as it moves along the
inclined ramps) of energy between the kinetic form (Eq. 7-1) and the potential form (Eq.
8-9). Along the horizontal plateaus, however, there is friction which causes some of the
kinetic energy to dissipate in accordance with Eq. 8-31 (along with Eq. 6-2 where u =
0.50 and Fy = mg in this situation). Thus, after it slides down a (vertical) distance d it

2

1
has gained K = 5 mv = mgd, some of which (AEyw, = 1 mgd) is dissipated, so that the

value of kinetic energy at the end of the first plateau (just before it starts descending
towards the lowest plateau) is K = mgd — tyymgd = 0.5mgd. In its descent to the lowest
plateau, it gains mgd/2 more kinetic energy, but as it slides across it “loses” . mgd/2 of it.
Therefore, as it starts its climb up the right ramp, it has kinetic energy equal to

K=0.5mgd + mgd/2— . mgd/2 =3 mgd / 4.

Setting this equal to Eq. 8-9 (to find the height to which it climbs) we get H = %d. Thus,
the block (momentarily) stops on the inclined ramp at the right, at a height of

H=0.75d=0.75 (40 cm) = 30 cm

measured from the lowest plateau.
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63. The initial and final kinetic energies are zero, and we set up energy conservation in
the form of Eq. 8-33 (with W = 0) according to our assumptions. Certainly, it can only
come to a permanent stop somewhere in the flat part, but the question is whether this
occurs during its first pass through (going rightward) or its second pass through (going
leftward) or its third pass through (going rightward again), and so on. If it occurs during
its first pass through, then the thermal energy generated is AEy = fid where d < L
and f, = y,mg . If it occurs during its second pass through, then the total thermal energy

is AEw = 1 mg(L + d) where we again use the symbol d for how far through the level area
it goes during that last pass (so 0 < d < L). Generalizing to the n™ pass through, we see
that

AEq = hemg[(n — 1)L + d].

In this way, we have
mgh = ,ukmg((n ~-1)L +a’)

which simplifies (when 4 = L/2 is inserted) to

—=1+
L 2,

—n.

The first two terms give 141/2u, =35, so that the requirement 0<d/L <1 demands

. ) 1
that n = 3. We arrive at the conclusion that d/L = E , Or

d =1L=l(40 cm)=20 cm
2 2

and that this occurs on its third pass through the flat region.
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64. We will refer to the point where it first encounters the “rough region” as point C (this
is the point at a height h above the reference level). From Eq. 8-17, we find the speed it
has at point C to be

ve= v = 2gh = \/(8.0)> = 2(9.8)(2.0) =4.980 = 5.0 m/s.

Thus, we see that its kinetic energy right at the beginning of its “rough slide” (heading
uphill towards B) is

]
Ke =75 m(4.980 m/s)? = 12.4m

(with SI units understood). Note that we “carry along” the mass (as if it were a known
quantity); as we will see, it will cancel out, shortly. Using Eq. 8-37 (and Eq. 6-2 with Fiy
=mgcosd) and y=dsin@, we note that if d < L (the block does not reach point B), this
kinetic energy will turn entirely into thermal (and potential) energy

Kc=mgy+fid = 12.4m=mgdsin@ + Ly mgdcosé.
With = 0.40 and 8= 30° we find d = 1.49 m, which is greater than L (given in the
problem as 0.75 m), so our assumption that d < L is incorrect. What is its kinetic energy

as it reaches point B? The calculation is similar to the above, but with d replaced by L
and the final v* term being the unknown (instead of assumed zero):

ym v = K¢ — (mgLsin@ + wymgLcos6) .

This determines the speed with which it arrives at point B:

Vv = \/vé —2gL(sin 6+ 1, cos 0)
= \/(4.98 m/s)* —2(9.80 m/s*)(0.75 m)(sin 30°+0.4 cos 30°) = 3.5 m/s.
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65. We observe that the last line of the problem indicates that static friction is not to be
considered a factor in this problem. The friction force of magnitude f = 4400 N
mentioned in the problem is kinetic friction and (as mentioned) is constant (and directed
upward), and the thermal energy change associated with it is AEy, = fd (Eq. 8-31) where d
= 3.7 m in part (a) (but will be replaced by x, the spring compression, in part (b)).

(a) With W = 0 and the reference level for computing U = mgy set at the top of the
(relaxed) spring, Eq. 8-33 leads to

U=K+AE, =>v= 2d(g—1j
m

which yields v=74m/s for m= 1800 kg.

(b) We again utilize Eq. 8-33 (with W = 0), now relating its kinetic energy at the moment
it makes contact with the spring to the system energy at the bottom-most point. Using the
same reference level for computing U = mgy as we did in part (a), we end up with

gravitational potential energy equal to mg(—x) at that bottom-most point, where the spring
(with spring constant & =15x10° N/m) is fully compressed.

K=mg(—x)+%kx2 + fx

1 . . . .
where K = Emv2 =49x10* ] using the speed found in part (a). Using the abbreviation

E=mg—f=1.3x 10" N, the quadratic formula yields

+.E +2kK
_SENG +2KK 5k+ K 090m

X

where we have taken the positive root.

(c) We relate the energy at the bottom-most point to that of the highest point of rebound
(a distance d' above the relaxed position of the spring). We assume d’' > x. We now use
the bottom-most point as the reference level for computing gravitational potential energy.

1 2 ’ ’ ’ kx2
—kl=mgd + fd' =>d =————=28m.
2 2(mg+d)

(d) The non-conservative force (§8-1) is friction, and the energy term associated with it is
the one that keeps track of the total distance traveled (whereas the potential energy terms,
coming as they do from conservative forces, depend on positions — but not on the paths
that led to them). We assume the elevator comes to final rest at the equilibrium position
of the spring, with the spring compressed an amount d.q given by

m
mg=kd,, =d, =7g=0.12m.
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In this part, we use that final-rest point as the reference level for computing gravitational
potential energy, so the original U = mgy becomes mg(d.q + d). In that final position, then,

. . . . . 2
the gravitational energy is zero and the spring energy is kd,, /2. Thus, Eq. 8-33 becomes

mg(d,,+d)= %kdjq + fd

total

%(1.5 x10°)(0.12)" +(4400)d

(1800)(9.8)(0.12 +3.7)

total

which yields dioa = 15 m.
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66. (a) Since the speed of the crate of mass m increases from 0 to 1.20 m/s relative to the
factory ground, the kinetic energy supplied to it is

K =%mv2 = %(300kg)(120m/s)2 =2161.
(b) The magnitude of the kinetic frictional force is
f = uF, = umg =(0.400)(300kg)(9.8m/s*) =1.18x10° N,

(c) Let the distance the crate moved relative to the conveyor belt before it stops slipping
be d, then from Eq. 2-16 (v* = 2ad = 2(f/ m)d) we find

AE, =fc17=%mv2 =K.
Thus, the total energy that must be supplied by the motor is
W=K+AE, =2K =(2)(216])=432].

(d) The energy supplied by the motor is the work W it does on the system, and must be
greater than the kinetic energy gained by the crate computed in part (b). This is due to the
fact that part of the energy supplied by the motor is being used to compensate for the
energy dissipated AEy, while it was slipping.
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67. (a) The assumption is that the slope of the bottom of the slide is horizontal, like the
ground. A useful analogy is that of the pendulum of length R = 12 m that is pulled
leftward to an angle & (corresponding to being at the top of the slide at height # = 4.0 m)
and released so that the pendulum swings to the lowest point (zero height) gaining speed
v=62m/s. Exactly as we would analyze the trigonometric relations in the pendulum

problem, we find

h=R(1-cosf)= O =cos (1—%) =48°
or 0.84 radians. The slide, representing a circular arc of length s = R6, is therefore (12
m)(0.84) = 10 m long.
(b) To find the magnitude f of the frictional force, we use Eq. 8-31 (with W = 0):
0=AK+AU+AE,

1
= Emv2 —mgh+ fs
so that (with m = 25 kg) we obtain /=49 N.

(c) The assumption is no longer that the slope of the bottom of the slide is horizontal, but
rather that the slope of the top of the slide is vertical (and 12 m to the left of the center of
curvature). Returning to the pendulum analogy, this corresponds to releasing the
pendulum from horizontal (at 6, = 90° measured from vertical) and taking a snapshot of
its motion a few moments later when it is at angle 6 with speed v = 6.2 m/s. The
difference in height between these two positions is (just as we would figure for the
pendulum of length R)

Ah=R(1-cos8,)— R(1—cos6,)=—Rcosb,
where we have used the fact that cos ¢, = 0. Thus, with Ah = —4.0 m, we obtain & =70.5°
which means the arc subtends an angle of |Ag = 19.5° or 0.34 radians. Multiplying this
by the radius gives a slide length of s'=4.1 m.

(d) We again find the magnitude /"' of the frictional force by using Eq. 8-31 (with W= 0):

0=AK+AU+AE,

1
=5mv2 —mgh+ s’

so that we obtain /"= 1.2 x 10 N,
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68. We use conservation of mechanical energy: the mechanical energy must be the same
at the top of the swing as it is initially. Newton's second law is used to find the speed, and
hence the kinetic energy, at the top. There the tension force 7 of the string and the force
of gravity are both downward, toward the center of the circle. We notice that the radius of
the circle is » = L — d, so the law can be written

T+mg=mv2/(L—d),

where v is the speed and m is the mass of the ball. When the ball passes the highest point
with the least possible speed, the tension is zero. Then

2

v
mg:mL_d = v:wlg(L—d) .

We take the gravitational potential energy of the ball-Earth system to be zero when the
ball is at the bottom of its swing. Then the initial potential energy is mgL. The initial
kinetic energy is zero since the ball starts from rest. The final potential energy, at the top

of the swing, is 2mg(L — d) and the final kinetic energy is 1mv’ =1img(L—d) using the

above result for v. Conservation of energy yields
mgL = ng(L —d)+%mg(L —-d) = d=3L/5.

With L = 1.20 m, we have d = 0.60(1.20 m) = 0.72 m.
Notice that if d is greater than this value, so the highest point is lower, then the speed of

the ball is greater as it reaches that point and the ball passes the point. If d is less, the ball
cannot go around. Thus the value we found for d is a lower limit.
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69. There is the same potential energy change in both circumstances, so we can equate
the kinetic energy changes as well:

1 1 1 1
AK=AK, = 5 mvg® — 5 m(4.00 m/s)’ = 5 m(2.60 m/s)> — 5 m(2.00 m/s)?

which leads to vz = 4.33 m/s.
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70. (a) To stretch the spring an external force, equal in magnitude to the force of the
spring but opposite to its direction, is applied. Since a spring stretched in the positive x
direction exerts a force in the negative x direction, the applied force must be

F =52.8x+38.4x7, in the +x direction. The work it does is

1.00
=31.0J.

0.50

1.00
W= [(52.8x+38.4x )dx = (%sz +%x3j

0.50

(b) The spring does 31.0 J of work and this must be the increase in the kinetic energy of
the particle. Its speed is then

2(31.0J
v:1/2—K= quSSm/s.
m 217kg

(c) The force is conservative since the work it does as the particle goes from any point x;
to any other point x, depends only on x; and x;, not on details of the motion between x;
and x,.
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71. This can be worked entirely by the methods of Chapters 2—6, but we will use energy
methods in as many steps as possible.

(a) By a force analysis in the style of Chapter 6, we find the normal force has magnitude
Fy=mg cos @ (where = 39°) which means f; = 1 mg cos €@ where 14 = 0.28. Thus, Eq.
8-31 yields

AEw = fid = tmgd cos 6.

Also, elementary trigonometry leads us to conclude that AU = —mgd sin @ where
d =3.7 m. Since K; =0, Eq. 8-33 (with W = 0) indicates that the final kinetic energy is

K, =-AU-AE, =mgd (sinf— u, cosb)

which leads to the speed at the bottom of the ramp

2K
v=,|—L :\/2gd (sin@— u, cosf) =55 my/s.
m

(b) This speed begins its horizontal motion, where f; = 1 mg and AU = 0. It slides a
distance d' before it stops. According to Eq. 8-31 (with W =0),

0=AK+AU+AE,

1
= O—Emv2 +0+ u, mgd’

= —%(2gd (siné’—,uk cosﬁ))'i'ﬂkgd,

where we have divided by mass and substituted from part (a) in the last step. Therefore,

g d(sin@— u, cos6) Csam
Hy

(c) We see from the algebraic form of the results, above, that the answers do not depend
on mass. A 90 kg crate should have the same speed at the bottom and sliding distance
across the floor, to the extent that the friction relations in Ch. 6 are accurate. Interestingly,
since g does not appear in the relation for d’, the sliding distance would seem to be the
same if the experiment were performed on Mars!
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72. (a) At B the speed is (from Eq. 8-17)

V=V +2gh =+/(7.0 m/s)? +2(9.8 m/s>)(6.0 m) = 13 ms.

(a) Here what matters is the difference in heights (between A4 and C):

v= V2 +2g(l —hy) = (7.0 m/s)* +2(9.8 m/s*)(4.0 m) =11.29 m/s ~ 11 my/s.

(c) Using the result from part (b), we see that its kinetic energy right at the beginning of
1
its “rough slide” (heading horizontally towards D) is 5 m(11.29 m/s)* = 63.7m (with SI

units understood). Note that we “carry along” the mass (as if it were a known quantity);
as we will see, it will cancel out, shortly. Using Eq. 8-31 (and Eq. 6-2 with Fy = mg) we
note that this kinetic energy will turn entirely into thermal energy

63.7m = wmgd
ifd <L. With uy= 0.70, we find d = 9.3 m, which is indeed less than L (given in the

problem as 12 m). We conclude that the block stops before passing out of the “rough”
region (and thus does not arrive at point D).
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73. (a) By mechanical energy conversation, the kinetic energy as it reaches the floor
(which we choose to be the U = 0 level) is the sum of the initial kinetic and potential
energies:

1
K=K+ U= 5 (2.50kg)(3.00 m/s)’ + (2.50 kg)(9.80 m/s’)(4.00 m) = 109 J.

For later use, we note that the speed with which it reaches the ground is

y= \/2K/m =9.35m/s.

(b) When the drop in height is 2.00 m instead of 4.00 m, the kinetic energy is
1
K=7 (2.50 kg)(3.00 m/s)* + (2.50 kg)(9.80 m/s*)(2.00 m) = 60.3 J.

(c) A simple way to approach this is to imagine the can is /aunched from the ground at
t=0 with speed 9.35 m/s (see above) and ask of its height and speed at t = 0.200 s,
using Eq. 2-15 and Eq. 2-11:

]
y=1(9.35m/s)(0.200 5) - 5 (9.80 m/s?)(0.200 s)* = 1.67 m,
v=9.35m/s — (9.80 m/s*)(0.200 s) = 7.39 m/s.

The kinetic energy is
1
K= 75 (250 kg) (7.39 m/s)’ = 68.2 J.

(d) The gravitational potential energy

U=mgy=(2.5kg)(9.8 m/s*)(1.67m)=41.07
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74. (a) The initial kinetic energy is K, =1(15)(3)" =6.75J.

(b) The work of gravity is the negative of its change in potential energy. At the highest
point, all of K; has converted into U (if we neglect air friction) so we conclude the work
of gravity is —6.75 J.

(c) And we conclude that AU =6.7517.

(d) The potential energy thereis U, =U, +AU =6.7517J.
(e IfUy=0,then U, =U,-AU=-6.751].

(f) Since mgAy =AU , we obtain Ay=0.459 m.
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75. We note that if the larger mass (block B, mz= 2 kg) falls d = 0.25 m, then the smaller
mass (blocks A, my = 1 kg) must increase its height by /4 =dsin30°. Thus, by
mechanical energy conservation, the kinetic energy of the system is

K =mzgd—m,gh=3.71].

total
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76. (a) At the point of maximum height, where y = 140 m, the vertical component of
velocity vanishes but the horizontal component remains what it was when it was
launched (if we neglect air friction). Its kinetic energy at that moment is

K= %(0.55 kg)v?.

Also, its potential energy (with the reference level chosen at the level of the cliff edge) at
that moment is U = mgy = 755 J. Thus, by mechanical energy conservation,

2(1550~755)
055

K=K, -U=1550-755=v, = = 54 mJs.

(b) As mentioned v, = v;, so that the initial kinetic energy

K. =%m(vfx +vi2y)

1

can be used to find v;,. We obtain v, =52 m/s.

(c) Applying Eq. 2-16 to the vertical direction (with +y upward), we have
vﬁ = vizy —2gAy = (65m/s)* =(52m/s)* —2(9.8 m/s’)Ay

which yields Ay =—-76 m. The minus sign tells us it is below its launch point.
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77. The work done by F is the negative of its potential energy change (see Eq. 8-6), so
UB= UA—25= 151J.
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78. The free-body diagram for the trunk is shown.

/ ~a g sind
mgcost T

The x and y applications of Newton's second law provide two equations:

Fycos 0—fy—mgsin @ =ma
Fy—Fysin 8—mgcos 8 =0.

(a) The trunk is moving up the incline at constant velocity, so a = 0. Using f; = t Fn, we
solve for the push-force F; and obtain

P mg(sin@+ p, cosb)
cosf@—p, sinf

The work done by the push-force 13l as the trunk is pushed through a distance ¢ up the
inclined plane is therefore

(mglcos@)(sin@+ p,cos6)

cos@—y, sinf
(50 kg)(9.8 m/s*)(6.0 m)(cos30°)(sin30°+(0.20)cos 30°)
c0s30°—(0.20)sin 30°

W, = Flcos@ =

=2.2x10°J.
(b) The increase in the gravitational potential energy of the trunk is
AU =mg/sin @ = (50kg)(9.8m/s*)(6.0m)sin 30°=1.5x10" J.

Since the speed (and, therefore, the kinetic energy) of the trunk is unchanged, Eq. 8-33
leads to

W,=AU+AE,.
Thus, using more precise numbers than are shown above, the increase in thermal energy

(generated by the kinetic friction) is 2.24 x 10° J — 1.47 x 10° T = 7.7 x 10* J. An alternate
way to this result is touse AE, = f,/ (Eq. 8-31).
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79. The initial height of the 2M block, shown in Fig. 8-64, is the y = 0 level in our
computations of its value of U,. As that block drops, the spring stretches accordingly.
Also, the kinetic energy Kj,, is evaluated for the system -- that is, for a total moving mass
of 3M.

(a) The conservation of energy, Eq. 8-17, leads to
1
Ki+U =Ky +Uys = 0+0=K,,+ (2M)g(-0.090) + 5 k(0.090) .
Thus, with M = 2.0 kg, we obtain K, = 2.7 J.

(b) The kinetic energy of the 2M block represents a fraction of the total kinetic energy:

K, _@QM»/2_2
K. @GMWw/2 3

Sys

2
Therefore, Koy = §(2.7 H=181.
(c) Here we let y = —d and solve for d.
1
Kit U=Ky+ Uy = 040 = 0+QMg(-d)+ 5 kd".

Thus, with M = 2.0 kg, we obtain d = 0.39 m.
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80. Sample Problem 8-3 illustrates simple energy conservation in a similar situation, and
derives the frequently encountered relationship: v=./2gh. In our present problem, the

height is related to the distance (on the 8 =10° slope) d = 920 m by the trigonometric
relation 4 = d sin@. Thus,

v=1/2(9.8 m/s>)(920 m)sin10° = 56 m/s.
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81. Eq. 8-33 gives mgy, =K, +mgy, —AE, , or

(0.50 kg)(9.8 m/s%)(0.80 m) = % (0.50 kg)(4.00 /s)* + (0.50 kg)(9.8 m/s*)(0) — AEy,

which yields AEy, =4.00J —-3.92J=0.080 J.
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1 1
82. (a) The loss of the initial K = 5 mv* = 5 (70 kg)(10 m/s)* is 3500 J, or 3.5 kJ.

(b) This is dissipated as thermal energy; AEw = 3500 J = 3.5 kJ.
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83. The initial height shown in the figure is the y = 0 level in our computations of U,, and
in parts (a) and (b) the heights are y, =(0.80 m)sin 40°= 0.51 m and y, = (1.00 m) sin 40°
= 0.64 m, respectively.

(a) The conservation of energy, Eq. 8-17, leads to
1
Ki+U=K,+U, = 16J+0=K,+ mgy,+ 5k(0.20m)2

from which we obtain K, = (16 —5.0-4.0) J=7.0J.

(b) Again we use the conservation of energy
1
Ki+U=Ky+ Uy = Ki+0=0+mgy,+ 5 k(0.40 m)’

from which we obtain K;=6.0J+16J=221].
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84. (a) Eq. 8-9 gives U= (3.2 kg)(9.8 m/s%)(3.0 m) = 94 J.

(b) The mechanical energy is conserved, so K =94 J.

(c) The speed (from solving Eq. 7-1) is v =\/2(94 1/(32kg)=7.7 m/s.
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85. (a) Resolving the gravitational force into components and applying Newton’s second
law (as well as Eq. 6-2), we find

Finachine — mgsin@— (, mgcos 0= ma.
In the situation described in the problem, we have a = 0, so
Finachine = mgsin@+ . mgcos@= 372 N.
Thus, the work done by the machine is  Finachined = 744 J = 7.4 X 10%].

b) The thermal ener enerated is wmgcos@d =240 =2.4 x 10%7].
(b) gy g Miemg

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

wwv. Mohandesyar . com

86. We use P = Fv to compute the force:

) =55%x10°N.

(325 knot)(1.852 km/ hj 1000 m/km
knot 3600s/h

F=

P 92x10°W
N
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87. Since the speed is constant AK = 0 and Eq. 8-33 (an application of the energy
conservation concept) implies

W,

applied = AE"sh = AE‘th + AEvth

(cube) (floor) *

Thus, if Wippiiea = (15 N)(3.0 m) = 45 J, and we are told that AEy, (cube) = 20 J, then we
conclude that AE, (fioor) = 25 J.
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88. (a) We take the gravitational potential energy of the skier-Earth system to be zero
when the skier is at the bottom of the peaks. The initial potential energy is U; = mgH,
where m is the mass of the skier, and H is the height of the higher peak. The final
potential energy is Ur= mgh, where h is the height of the lower peak. The skier initially

o o . 1 .
has a kinetic energy of K; = 0, and the final kinetic energy is K, = Emvz, where v is the

speed of the skier at the top of the lower peak. The normal force of the slope on the skier
does no work and friction is negligible, so mechanical energy is conserved:

1
U+K =U,+K, = mgHzmgh+§mv2
Thus,

v=+/2g(H —h) :\/2(9.8 m/s*)(850 m—750 m) =44 m/s.

(b) We recall from analyzing objects sliding down inclined planes that the normal force
of the slope on the skier is given by Fy = mg cos 6, where 81is the angle of the slope from
the horizontal, 30° for each of the slopes shown. The magnitude of the force of friction is
given by f= u Fy = tyymg cos 6. The thermal energy generated by the force of friction is
fd = 1 mgd cos 6, where d is the total distance along the path. Since the skier gets to the
top of the lower peak with no kinetic energy, the increase in thermal energy is equal to
the decrease in potential energy. That is, 1 mgd cos 8= mg(H- h). Consequently,

_H-h (850 m—750 m)

= = =0.036.
dcos@® (3.2x10° m)cos30°

k
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89. To swim at constant velocity the swimmer must push back against the water with a
force of 110 N. Relative to him the water is going at 0.22 m/s toward his rear, in the same
direction as his force. Using Eq. 7-48, his power output is obtained:

P=F-v=Fvr=(110N)(022m/s)=24W.
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90. The initial kinetic energy of the automobile of mass m moving at speed v; is
K = %mvf , where m = 16400/9.8 = 1673 kg. Using Eq. 8-31 and Eq. 8-33, this relates to

the effect of friction force f'in stopping the auto over a distance d by K, = fd , where the
road is assumed level (so AU = 0). With

v, = (113 km/h) = (113 km/h) (1000 m/km)(1 h/3600 s)=31.4 m/s,

we obtain
. 2 (1673ke)(31.4 m/s)?
g K _mv _(1673ke)( S _100m.
f2f 2(8230N)
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91. With the potential energy reference level set at the point of throwing, we have (with
SI units understood)

AE = mgh —%mvé = m((9.8)(8.1) —%(14)2)

which yields AE =—12 J for m = 0.63 kg. This “loss” of mechanical energy is presumably
due to air friction.
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92. (a) The (internal) energy the climber must convert to gravitational potential energy is
AU =mgh = (90 kg)(9.80 m/s* ) (8850 m) =7.8x10° J.

(b) The number of candy bars this corresponds to is

7.8%x10°7

ST 25x10° Jbar 0 20AT:
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93. (a) The acceleration of the sprinter is (using Eq. 2-15)

a= 28x (2)(7.0m) =547m/s’
£ (16s) '

Consequently, the speed at ¢ = 1.6s is v=at = (547 m/ s*)(1.6s) =88m/s. Alternatively,
Eq. 2-17 could be used.

(b) The kinetic energy of the sprinter (of weight w and mass m = w/g) is
1 2 l w 2 1 2 2 3
K=—my’==|= v =§(670 N/(9.8 m/s*)) (8.8 m/s) =2.6x10°J.

(c) The average power is

_AK 2.6x10°]

g = — = =1.6x10° W.
At 1.6s
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94. We note that in one second, the block slides d = 1.34 m up the incline, which means
its height increase is # = d sin € where

60 =tan™ (ﬁ) =37°.
40

We also note that the force of kinetic friction in this inclined plane problem is
Ji = u,mgcos@, where 1 = 0.40 and m = 1400 kg. Thus, using Eq. 8-31 and Eq. 8-33,
we find

W =mgh+ f,d =mgd (sin@+ i, cosb)

or W=1.69 x 10* J for this one-second interval. Thus, the power associated with this is

~1.69%x10% J
ls

P =1.69%10* W =1.7x10* W .
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95. (a) The initial kinetic energy is K, = (1.5 kg)(20 m/s)* /2 =300 J.

(b) At the point of maximum height, the vertical component of velocity vanishes but the
horizontal component remains what it was when it was “shot” (if we neglect air friction).
Its kinetic energy at that moment is

K= %(1.5 kg)[(20 m/s) cos34°]" =206 J.

Thus, AU=K,—K=300J-206J=93.81.
(c) Since A U=mgAy, we obtain

B 94 J
(1.5 kg)(9.8 m/s?)

Ay =6.38m.
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96. From Eq. 8-6, we find (with SI units understood)

U =- '[05(—3)6 - 5x2) dx = %fz + géﬁ

(a) Using the above formula, we obtain U(2) = 19 J.

(b) When its speed is v = 4 m/s, its mechanical energy is +mv* + U(5). This must equal
the energy at the origin:

%mﬁ+U@:%mﬁ+U@

so that the speed at the origin is

%:Jw+3u43-um»

m
Thus, with U(5) =246 J, U(0) = 0 and m = 20 kg, we obtain v, = 6.4 m/s.
(c) Our original formula for U is changed to

U(x)=-8+3x> +3x°

in this case. Therefore, U(2) = 11 J. But we still have v, = 6.4 m/s since that calculation
only depended on the difference of potential energy values (specifically, U(5) — U(0)).
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68000 J
(9.4 kg)(9.8 m/s?)

97. Eq. 8-8 leads directly to Ay = =738 m.
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98. Since the period T'is (2.5 rev/s)™' = 0.40 s, then Eq. 4-33 leads to v=3.14 m/s. The
frictional force has magnitude (using Eq. 6-2)

= Fy=(0.320)(180 N) = 57.6 N.

The power dissipated by the friction must equal that supplied by the motor, so Eq. 7-48
gives P=(57.6 N)(3.14 m/s) = 181 W.
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99. (a) In the initial situation, the elongation was (using Eq. 8-11)

x: = \J2(1.44)/3200 =0.030 m (or 3.0 cm).

In the next situation, the elongation is only 2.0 cm (or 0.020 m), so we now have less
stored energy (relative to what we had initially). Specifically,

1
AU= 5 (3200 N/m)(0.020 m)” — 1.44 1 =—0.80 J.

(b) The elastic stored energy for |x| = 0.020 m, does not depend on whether this
represents a stretch or a compression. The answer is the same as in part (a), AU =-0.80 J.

(c) Now we have |x| = 0.040 m which is greater than x;, so this represents an increase in
the potential energy (relative to what we had initially). Specifically,

1
AU= 5 (3200 N/m)(0.040 m)’ — 1.44 J=+1.12J =~1.1J.
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100. (a) At the highest point, the velocity v = v, is purely horizontal and is equal to the
horizontal component of the launch velocity (see section 4-6): vo, = v, cosé, where
6 =30°1n this problem. Eq. 8-17 relates the kinetic energy at the highest point to the
launch kinetic energy:

1 2

sl 1
=5 My’ T 5 mvg.

1
K, =mgy+ 5 mv

with y = 1.83 m. Since the mvoxz/Z term on the left-hand side cancels the mv?/2 term on
the right-hand side, this yields v, = \/2gy = 6 m/s. With v, =v, siné, we obtain

vo=11.98 m/s = 12 my/s.
(b) Energy conservation (including now the energy stored elastically in the spring, Eq.

8-11) also applies to the motion along the muzzle (through a distance d which
corresponds to a vertical height increase of dsin@):

1
5 kd?=K,+mgdsing = d=0.11m,
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101. (a) We implement Eq. 8-37 as
Ky =Ki+mgyi—fid=0+ (60 kg)(9.8 m/s’)(4.0 m) — 0=2.35x 10’ J.
(b) Now it applies with a nonzero thermal term:

Kr=K;+ mgyi — frd = 0 + (60 kg)(9.8 m/s>)(4.0 m) — (500 N)(4.0 m) = 352 1.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

102. (a) We assume his mass is between m; = 50 kg and m, = 70 kg (corresponding to a
weight between 110 Ib and 154 Ib). His increase in gravitational potential energy is
therefore in the range

mgh<AU <m,gh = 2x10°<AU <3x10’
in SI units (J), where & =443 m.
(b) The problem only asks for the amount of internal energy which converts into
gravitational potential energy, so this result is the same as in part (a). But if we were to

consider his fotal internal energy “output” (much of which converts to heat) we can
expect that external climb is quite different from taking the stairs.
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103. We use SI units so m = 0.030 kg and d = 0.12 m.

(a) Since there is no change in height (and we assume no changes in elastic potential
energy), then AU = 0 and we have

AE

mech

=AK=—lmv§ =-3.8x10’ J.
2

where vy = 500 m/s and the final speed is zero.
(b) By Eq. 8-33 (with W = 0) we have AEy, = 3.8 x 10° J, which implies

f:%:?a.lxlo“ N

using Eq. 8-31 with f; replaced by f (effectively generalizing that equation to include a
greater variety of dissipative forces than just those obeying Eq. 6-2).
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104. We work this in SI units and convert to horsepower in the last step. Thus,

v = (80km/h) [%) =222m/s.

The force Fp needed to propel the car (of weight w and mass m = w/g) is found from
Newton’s second law:

where F =300 + 1.8v” in SI units. Therefore, the power required is

MJ (222)=5.14x10° W

P:FP~v:(F+ﬂjv:£300+1.8(22.2)2+(
g

=(5.14x10* w)( Lhp ):69 hp
746 W
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105. (a) With P=1.5 MW = 1.5 x 10° W (assumed constant) and # = 6.0 min = 360 s, the
work-kinetic energy theorem becomes

W= Pt:AK:%m(v; —v}).

The mass of the locomotive is then

_2pe (2)(15x10°W)(360s)
vi=v,  (25m/s)’ —(10m/s)’

=21x10°kg.

(b) With ¢ arbitrary, we use Pt:%m(v2 —vl.z) to solve for the speed v = w(¢) as a

function of time and obtain

(1) =,V +% = \/(10)2 +M =100+ 1.5¢

2.1x10°
in SI units (v in m/s and ¢ in s).
(c) The force F(¥) as a function of time is

P 15x10°
v(r) 100+ 15¢

F(t)=
in SI units (£ in N and ¢ in s).

(d) The distance d the train moved is given by

360

360 3 1/2 4 3 3/2
d= J;v(t’)art’=jO (1oo+5zj dt=§(100+5zj =6.7x10° m.
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106. We take the bottom of the incline to be the y = 0 reference level. The incline angle is
60 =30°. The distance along the incline d (measured from the bottom) is related to height
v by the relation y = d sin 6.

(a) Using the conservation of energy, we have

top top

K,+U,=K,  +U :%mv§+0=0+mgy

withv, =5.0m/s. This yields y = 1.3 m, from which we obtain d = 2.6 m.

(b) An analysis of forces in the manner of Chapter 6 reveals that the magnitude of the
friction force is f; = mg cos 6. Now, we write Eq. 8-33 as

K,+U, =K +Utop+fkd

top
%mvé +0=0+mgy+ f,d
1 .
Emvj = mgd sin @+ 1, mgd cos 6

which — upon canceling the mass and rearranging — provides the result for d:

2
Vo

d= :
2g(u, cosf+sinb)

=15m.

(c) The thermal energy generated by friction is fid = 4 mgd cos =26 1.

(d) The slide back down, from the height y = 1.5 sin 30 is also described by Eq. 8-33.
With AE, again equal to 26 J, we have

K, +U, =K

1
oo FUip = Koo # Uy + f1d = 0+mgy=5mvf,m +0+26

from which we find v, =2.1 m/s.
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107. (a) The effect of a (sliding) friction is described in terms of energy dissipated as
shown in Eq. 8-31. We have

1
2

1

AE =K+ -—
2

k(0.08)" == k(0.10)" =— £, (0.02)

where distances are in meters and energies are in Joules. With £ = 4000 N/m and
. =80 N,we obtain K= 5.6 J.

(b) In this case, we have d = 0.10 m. Thus,

1
AE = K+0—5k(0.10)2 =—7£,(0.10)
which leads to K =12 J.
(c) We can approach this two ways. One way is to examine the dependence of energy on
the variable d:
1 1
AE = K+5k(do ~d)’ —Ekd(f =—fd

where dp = 0.10 m, and solving for K as a function of d:

K= —%kdz +(kdy)d — fd.

In this first approach, we could work through the Z—I; =0 condition (or with the special

capabilities of a graphing calculator) to obtain the answer K, = i(kd0 —fi )2. In the

second (and perhaps easier) approach, we note that K is maximum where v is
maximum — which is where a =0= equilibrium of forces. Thus, the second approach
simply solves for the equilibrium position

};;pring

= f, = kx=280.

Thus, with £ = 4000 N/m we obtain x = 0.02 m. But x = dy — d so this corresponds to d =
0.08 m. Then the methods of part (a) lead to the answer Kpax = 12.8 J = 13 J.
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108. We assume his initial kinetic energy (when he jumps) is negligible. Then, his initial
gravitational potential energy measured relative to where he momentarily stops is what
becomes the elastic potential energy of the stretched net (neglecting air friction). Thus,

Unet = Ugrav = mgh

where 2 =11.0 m + 1.5 m = 12.5 m. With m = 70 kg, we obtain Uy = 8580 ] =8.6 X 10°
J.
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109. The connection between angle @ (measured from vertical) and height 4 (measured
from the lowest point, which is our choice of reference position in computing the
gravitational potential energy mgh) is given by & = L(1 — cos ) where L is the length of
the pendulum.

(a) Using this formula (or simply using intuition) we see the initial height is #; = 2L, and
of course /1, = 0. We use energy conservation in the form of Eq. 8-17.

K +U =K, +U,

1
0+mg (2L)= Emv2 +0

This leads tov=2,/gL . With L =0.62 m, we have

v=2,/(9.8 m/s>)(0.62 m) = 4.9 m/s .

(b) The ball is in circular motion with the center of the circle above it, so @ =v>/r
upward, where » = L. Newton's second law leads to

2 4ol
T—mgzmv—:T:m(g+%):5mg.
r

With m = 0.092 kg, the tension is given by 7=4.5 N.

(c) The pendulum is now started (with zero speed) at €, =90°(that is, ; = L), and we

look for an angle @ such that 7= mg. When the ball is moving through a point at angle 6,
then Newton's second law applied to the axis along the rod yields

2
T—mgcosé’:mv—
r

which (since » = L) implies v* = gL(1 — cos 6) at the position we are looking for. Energy
conservation leads to

K +U,=K+U

0+mgL = %mv2 +mgL (1—-cos6)
gL = %(gL(l—cosB)) + gL (1—-cosb)
where we have divided by mass in the last step. Simplifying, we obtain

9=cos‘l(lj=71°.
3

(d) Since the angle found in (c) is independent of the mass, the result remains the same if
the mass of the ball is changed.
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110. We take her original elevation to be the y = 0 reference level and observe that the
top of the hill must consequently have y4 = R(1 — cos 20°) = 1.2 m, where R is the radius
of the hill. The mass of the skier is 600/9.8 = 61 kg.

(a) Applying energy conservation, Eq. 8-17, we have

K,+U,=K,+U, =K, +0=K, +mgy,.
Using K, = 1(61kg)(80m/s)’, we obtain K4 = 1.2 x 10 J. Thus, we find the speed at

the hilltop is
v=42K/m =64 m/s.

Note: one might wish to check that the skier stays in contact with the hill — which is
indeed the case, here. For instance, at 4 we find Vvr = 2 m/s® which is considerably less
than g.
(b) With K4, =0, we have

K, +U,=K,+U, =K, +0=0+mgy,
which yields Kz = 724 J, and the corresponding speed is v = /2 K/m = 4.9 m/s.
(c) Expressed in terms of mass, we have

K,+U,=K,+U, =

L L
EmvB + mgy, :Eva +mgy, .

Thus, the mass m cancels, and we observe that solving for speed does not depend on the
value of mass (or weight).
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111. (a) At the top of its flight, the vertical component of the velocity vanishes, and the
horizontal component (neglecting air friction) is the same as it was when it was thrown.
Thus,

K

top =

L2 = %(0.050 ke)((8.0m/s)cos30°) =1.21.

(b) We choose the point 3.0 m below the window as the reference level for computing the
potential energy. Thus, equating the mechanical energy when it was thrown to when it is
at this reference level, we have (with SI units understood)

mgy, + K, =K

m(9.8)(3.0) +%m(8.0)2 = %mvz

which yields (after canceling m and simplifying) v =11 m/s.
(c) As mentioned, m cancels — and is therefore not relevant to that computation.

(d) The v in the kinetic energy formula is the magnitude of the velocity vector; it does not
depend on the direction.
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112. (a) The rate of change of the gravitational potential energy is

‘Z—(t] = mg% =—mg|v|=—(68)(9.8)(59) =—3.9x10" J/s.

Thus, the gravitational energy is being reduced at the rate of 3.9 x 10* W.

(b) Since the velocity is constant, the rate of change of the kinetic energy is zero. Thus
the rate at which the mechanical energy is being dissipated is the same as that of the
gravitational potential energy (3.9 x 10* W).
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113. The water has gained
1 1
AK =5 (10 kg)(13 m/s)’ — 5 (10 kg)(3.2 m/s)* =794

of kinetic energy, and it has lost AU = (10 kg)(9.8 m/s*)(15 m) = 1470 J .

of potential energy (the lack of agreement between these two values is presumably due to
transfer of energy into thermal forms). The ratio of these values is 0.54 = 54%. The
mass of the water cancels when we take the ratio, so that the assumption (stated at the end
of the problem: m = 10 kg) is not needed for the final result.
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114. (a) The integral (see Eq. 8-6, where the value of U at x = oo is required to vanish) is
straightforward. The result is U(x) = —Gmma/x.

(b) One approach is to use Eq. 8-5, which means that we are effectively doing the integral
of part (a) all over again. Another approach is to use our result from part (a) (and thus

use Eq. 8-1). Either way, we arrive at

_Gmll’}’lz Gm1m2 Gmll712d

X1 C oxi+td  xi(x+d)

w
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115. (a) During one second, the decrease in potential energy is

—AU = mg(-Ay) = (55%10° kg) (9.8m/s”) (50 m) =2.7x10° J

where +y is upward and Ay = y,— y;.

(b) The information relating mass to volume is not needed in the computation. By Eq.
8-40 (and the SI relation W = J/s), the result follows:

P=2.7x10°D/(1s)=2.7x10° W.

(c) One year is equivalent to 24 X 365.25 = 8766 h which we write as 8.77 kh. Thus, the
energy supply rate multiplied by the cost and by the time is

(2.7%10°W)(8.77 kh) (111:—\?;}3 =24%10"cents = $2.4 x 10°,
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116. (a) The kinetic energy K of the automobile of mass m at =30 s is

2
K =L = L(1500kg)| (72 knym)| 2200MKm Y 3651055,
2 2 3600s/h

(b) The average power required is

_AK30x10°)

= =1.0x10"W.
At 30s

(c) Since the acceleration  is constant, the power is P = Fv = mav = ma(at) = ma’t using
2

Eq. 2-11. By contrast, from part (b), the average power is F,, = mz‘; which becomes

1 . C .
—ma’t when v = at is again utilized. Thus, the instantaneous power at the end of the

interval is twice the average power during it: P=2P = (2) (1.0 x10* W) =20x10*W.

avg
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117. (a) The remark in the problem statement that the forces can be associated with
potential energies is illustrated as follows: the work from x =3.00 m to x = 2.00 m is

W= F,Ax =(5.00 N)(—1.00 m) =-5.00 J,
so the potential energy at x =2.00 m is U, = +5.00 J.

(b) Now, it is evident from the problem statement that Ey,.x = 14.0 J, so the kinetic energy
atx=2.00mis

K> =Enax— U, =14.0-5.00 =9.00 J.

(c) The work from x =2.00 mto x = 0 is W= F; Ax =(3.00 N)(-2.00 m) = —6.00 J, so the
potential energy at x =0 is

Up=6.00J+ U, =(6.00+5.00)J=11.01J.
(d) Similar reasoning to that presented in part (a) then gives
Ko=FEmax — Up=(14.0-11.0) ] =3.00 J.

(e) The work from x = 8.00 m to x = 11.0 m is W = F3 Ax =(—4.00 N)(3.00 m) =-12.0 J,
so the potential energy atx=11.0 mis U;; = 12.0 J.

(f) The kinetic energy at x = 11.0 m is therefore
K11 =Emax— U1 =(14.0-12.0) J =2.00 J.

(g) Now we have W = F4 Ax =(—1.00 N)(1.00 m) = —1.00 J, so the potential energy at
x=12.0mis

U,=100J+U;;=(1.00+12.0)J=13.0J.
(h) Thus, the kinetic energy at x = 12.0 m is
Kiy=Emnax— U2 =(14.0-13.0) = 1.00 J.

(1) There is no work done in this interval (from x = 12.0 m to x = 13.0 m) so the answers
are the same as in part (g): Ujp = 13.0J.

(j) There is no work done in this interval (from x = 12.0 m to x = 13.0 m) so the answers
are the same as in part (h): K, =1.00 J.

(k) Although the plot is not shown here, it would look like a “potential well” with
piecewise-sloping sides: from x = 0 to x = 2 (SI units understood) the graph if U is a
decreasing line segment from 11 to 5, and from x = 2 to x = 3, it then heads down to zero,
where it stays until x = 8, where it starts increasing to a value of 12 (at x = 11), and then
in another positive-slope line segment it increases to a value of 13 (at x = 12). For
x>12 its value does not change (this is the “top of the well”).
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(1) The particle can be thought of as “falling” down the 0 < x < 3 slopes of the well,
gaining kinetic energy as it does so, and certainly is able to reach x = 5. Since U =0 at x
=5, then it’s initial potential energy (11 J) has completely converted to kinetic: now K =
11.0 J.

(m) This is not sufficient to climb up and out of the well on the large x side (x > 8), but
does allow it to reach a “height” of 11 at x = 10.8 m.  As discussed in section 8-5, this is
a “turning point” of the motion.

(n) Next it “falls” back down and rises back up the small x slopes until it comes back to
its original position. Stating this more carefully, when it is (momentarily) stopped at x =

10.8 m it is accelerated to the left by the force }7“3 ; it gains enough speed as a result that it
eventually is able to return to x = 0, where it stops again.
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118. (a) At x = 5.00 m the potential energy is zero, and the kinetic energy is

1 1
K=75 mv* = 5 (2.00 kg)(3.45 m/s)*>=11.9 7.

The total energy, therefore, is great enough to reach the point x = 0 where U = 11.0 J,
with a little “left over” (11.9J—-11.0J =0.90251J). This is the kinetic energy at x =0,
which means the speed there is

v=4/2(0.9025 J)/(2 kg) =0.950 m/s.
It has now come to a stop, therefore, so it has not encountered a turning point.
(b) The total energy (11.9 J) is equal to the potential energy (in the scenario where it is
initially moving rightward) at x = 10.9756 = 11.0 m. This point may be found by
interpolation or simply by using the work-kinetic-energy theorem:

K=K, +W=0 = 119025+ (4)d=0 = d=2.9756=2098

(which when added to x = 8.00 [the point where F; begins to act] gives the correct result).
This provides a turning point for the particle’s motion.
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119. (a) During the final d = 12 m of motion, we use
K +U =K,+U,+ f,d
%mv2+0=0+0+fkd

where v = 4.2 m/s. This gives f; = 0.31 N. Therefore, the thermal energy change is
f,d=3.71.

(b) Using fr = 0.31 N we obtain fydi.1 = 4.3 J for the thermal energy generated by friction;
here, diota1 = 14 m.

(c) During the initial d'= 2 m of motion, we have

1
K, +U, +W,_ =K +U+fd =0+0+W —Emv2+0+fkd’

app app

which essentially combines Eq. 8-31 and Eq. 8-33. This leads to the result Wy, = 4.3 J,
and — reasonably enough — is the same as our answer in part (b).
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120. (a) The table shows that the force is +(3.0 N)i while the displacement is in the +x

direction ( d = +(3.0 m)g ), and it is —(3.0 N)g while the displacement is in the —x
direction. Using Eq. 7-8 for each part of the trip, and adding the results, we find the
work done i1s 18 J. This is not a conservative force field; if it had been, then the net work
done would have been zero (since it returned to where it started).

(b) This, however, is a conservative force field, as can be easily verified by calculating
that the net work done here is zero.

(c) The two integrations that need to be performed are each of the form f 2x dx so that
we are adding two equivalent terms, where each equals x* (evaluated at x = 4, minus its

value at x = 1). Thus, the work done is 2(4* — 1%) =30 J.

(d) This is another conservative force field, as can be easily verified by calculating that
the net work done here is zero.

(e) The forces in (b) and (d) are conservative.
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121. We use Eq. 8-20.
(a) The force atx =2.0 m is

dUu B _—(17.5 NH—-(-2.81)
dx 40m-1.0m

F=- =49N.

(b) The force points in the +x direction (but there is some uncertainty in reading the graph
which makes the last digit not very significant).

(c) The total mechanical energy at x =2.0 m is
L 1 2
E= Emv +U = 5(2.0)(—1.5) -77=-55

in SI units (Joules). Again, there is some uncertainty in reading the graph which makes
the last digit not very significant. At that level (5.5 J) on the graph, we find two points
where the potential energy curve has that value — at x = 1.5 m and x = 13.5 m. Therefore,
the particle remains in the region 1.5 <x < 13.5 m. The left boundary is at x = 1.5 m.

(d) From the above results, the right boundary is at x = 13.5 m.

(e) Atx=7.0 m, we read U = —17.5 J. Thus, if its total energy (calculated in the previous
part) is £ = —5.5 ], then we find

%mvz =E—Uz12J:>v=1/£(E—U) ~3.5 m/s
m

where there is certainly room for disagreement on that last digit for the reasons cited
above.
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122. The connection between angle @ (measured from vertical) and height 4 (measured
from the lowest point, which is our choice of reference position in computing the
gravitational potential energy) is given by # = L(1 — cos 8) where L is the length of the
pendulum.

(a) We use energy conservation in the form of Eq. 8-17.
K +U =K, +U,

0+mgL(1-cos®,) :%mvz2 +mgL(1-cos#,)

With L=1.4m, 6, = 30°, and & = 20°, we have

v, = \/ZgL(cosez —cos6,) =14 m/s.

(b) The maximum speed v; is at the lowest point. Our formula for 4 gives A3 = 0 when 6
=0°, as expected. From
K +U =K;+U,

O+mgL(1—cost9l):%711\/32 +0
we obtainv; =19 m/s.
(c) We look for an angle 6, such that the speed there is v, =v,/3. To be as accurate as

possible, we proceed algebraically (substituting v; =2 gL(1—cos8,) at the appropriate
place) and plug numbers in at the end. Energy conservation leads to

K +U =K,+U,

0+mgL(1—cos@,)= %mvf +mgL(1-cos6,)

2

mgL(1-cos8,) = %m%+mgL(l—cosﬁ4)

12gL(1-cos®
—choslez s 9COS )

—gLcosd,
where in the last step we have subtracted out mgL and then divided by m. Thus, we obtain

0, =cos_1[l+§cos¢9,j=28.2°z28°.
9 9

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

123. Converting to SI units, v,=83m/s and v=11L1m/s. The incline angle is
60 =5.0°. The height difference between the car's highest and lowest points is (50 m) sin

0= 4.4 m. We take the lowest point (the car's final reported location) to correspond to the
vy = 0 reference level.

(a) Using Eq. 8-31 and Eq. 8-33, we find
1 2 2
f,d=—-AK-AU = fkdzzm (VO -V )+mgy0 .

Therefore, the mechanical energy reduction (due to friction) is fid = 2.4 x 10* J.

(b) With d = 50 m, we solve for f; and obtain 4.7 x 10* N.
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124. Equating the mechanical energy at his initial position (as he emerges from the canon,
where we set the reference level for computing potential energy) to his energy as he lands,

we obtain
K, =K, +U,

%(60kg)(16m/s)2 = K, +(60kg)(9.8m/s*)(39m)

which leads to K= 5.4 x 10° J.
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125. (a) The compression is “spring-like” so the maximum force relates to the distance x
by Hooke's law:

F =he=x=—"0_~00030m.
25%10

(b) The work is what produces the “spring-like” potential energy associated with the
compression. Thus, using Eq. 8-11,

W =%kx2 = %(2.5><105)(0.0030)2 =1.11.

(c) By Newton's third law, the force F exerted by the tooth is equal and opposite to the
“spring-like” force exerted by the licorice, so the graph of F'is a straight line of slope k.
We plot F' (in newtons) versus x (in millimeters); both are taken as positive.

2

Sty — -

- | T

|
—+
]

b —

(d) As mentioned in part (b), the spring potential energy expression is relevant. Now,
whether or not we can ignore dissipative processes is a deeper question. In other words, it
seems unlikely that — if the tooth at any moment were to reverse its motion — that the

licorice could “spring back™ to its original shape. Still, to the extent that U =Ekx2

applies, the graph is a parabola (not shown here) which has its vertex at the origin and is
either concave upward or concave downward depending on how one wishes to define the
sign of F' (the connection being F = —dU/dx).

(e) As a crude estimate, the area under the curve is roughly half the area of the entire
plotting-area (8000 N by 12 mm). This leads to an approximate work of

1 . .
5 (8000 N) (0.012 m) = 50 J. Estimates in the range 40 < W < 50 J are acceptable.

(f) Certainly dissipative effects dominate this process, and we cannot assign it a
meaningful potential energy.
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126. (a) This part is essentially a free-fall problem, which can be easily done with
Chapter 2 methods. Instead, choosing energy methods, we take y = 0 to be the ground
level.

K +U,=K+U = 0+mgy, =%mv2+0

Therefore v=,/2gy, =9.2m/s, where y;=4.3 m.

(b) Eq. 8-29 provides AEw, = fid for thermal energy generated by the kinetic friction force.
We apply Eq. 8-31:

1
K +U,=K+U = 0+mgy, =5mv2+0+fkd.

With d = y;, m =70 kg and f; = 500 N, this yields v = 4.8 m/s.
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127. (a) When there is no change in potential energy, Eq. 8-24 leads to

app

1
4 =AK=Em(v2—v§).
Therefore, AE =6.0x10°J.

(b) From the above manipulation, we see Wy, = 6.0 X 10° J. Also, from Chapter 2, we
know that Af=Av/a =10 s. Thus, using Eq. 7-42,

_ W _60x10°

) == =600 W .
A 10

(c) and (d) The constant applied force is ma = 30 N and clearly in the direction of motion,
so Eq. 7-48 provides the results for instantaneous power

300 W for v=10 m/s

P=F-v=
' {900W for v=30 m/s

We note that the average of these two values agrees with the result in part (b).
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128. The distance traveled up the incline can be figured with Chapter 2
techniques: v* = v, +2aAx — Ax =200 m. This corresponds to an increase in height
equal to y = (200 m) sin &= 17 m, where 8 =5.0°. We take its initial height to be y = 0.

(a) Eq. 8-24 leads to

1 2 2
W =AE=§m (v —v0)+mgy .
Therefore, AE =8.6x10"J.

(b) From the above manipulation, we see Wy, = 8.6 X 10° J. Also, from Chapter 2, we
know that A7 =Av/a =10 s. Thus, using Eq. 7-42,

_ W _86x10°
T A 10

=860 W

where the answer has been rounded off (from the 856 value that is provided by the
calculator).

(c) and (d) Taking into account the component of gravity along the incline surface, the
applied force is ma + mg sin 8= 43 N and clearly in the direction of motion, so Eq. 7-48
provides the results for instantaneous power

430 W for v=10m/s

P=F-v=
{ 1300 W forv=30m/s

where these answers have been rounded off (from 428 and 1284, respectively). We note
that the average of these two values agrees with the result in part (b).
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129. We want to convert (at least in theory) the water that falls through 2 = 500 m into
electrical energy. The problem indicates that in one year, a volume of water equal to AAz
lands in the form of rain on the country, where 4 = 8 x 10" m* and Az = 0.75 m.
Multiplying this volume by the density p= 1000 kg/m’ leads to

My = PAAz =(1000)(8x10"%)(0.75) = 6x 10" kg

for the mass of rainwater. One-third of this “falls” to the ocean, so it is m = 2 x 10" kg
that we want to use in computing the gravitational potential energy mgh (which will turn
into electrical energy during the year). Since a year is equivalent to 3.2 x 10" s, we obtain

2x10")(9.8)(500
) :( x )( )( ):3.1><10”W.
e 32x107
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130. The spring is relaxed at y = 0, so the elastic potential energy (Eq. 8-11) is
U, =1ky*. The total energy is conserved, and is zero (determined by evaluating it at its

initial position). We note that U is the same as AU in these manipulations. Thus, we have

0=K+U,+U, = K=-U,-U,

where U, = mgy = (20 N)y with y in meters (so that the energies are in Joules). We
arrange the results in a table:

positiony | -0.05 | -0.10 | -0.15 | -0.20
K @075 [(d)1.0 |(20.75 | ()0
U, b)-1.0 |(©)-2.0 | (h)-3.0 | (k)-4.0
U, (©025 | (D10 |()225 |(1)4.0

www., Mohandesyar . com



http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

131. The power generation (assumed constant, so average power is the same as
instantaneous power) is

_mgh _(3/4)(1200m*)(10° kg/m*)(9.8m/s*)(100m)
t 1.0s

P =8.80x10° W.
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132. The style of reasoning used here is presented in §8-5.

(a) The horizontal line representing £, intersects the potential energy curve at a value of »
= 0.07 nm and seems not to intersect the curve at larger » (though this is somewhat
unclear since U (r) is graphed only up to » = 0.4 nm). Thus, if m were propelled towards
M from large r with energy E; it would “turn around” at 0.07 nm and head back in the
direction from which it came.

(b) The line representing £, has two intersection points 7; = 0.16 nm and », = 0.28 nm
with the U (r) plot. Thus, if m starts in the region r; < r < r, with energy E, it will bounce
back and forth between these two points, presumably forever.

(c) At 7= 0.3 nm, the potential energy is roughly U=—1.1 x 10" J.

(d) With M > > m, the kinetic energy is essentially just that of m. Since E=1 x 107" J, its
kinetic energy is K=E— U=2.1x10"1J.

(e) Since force is related to the slope of the curve, we must (crudely) estimate
|F | ~1x107”N at this point. The sign of the slope is positive, so by Eq. 8-20, the force is
negative-valued. This is interpreted to mean that the atoms are attracted to each other.

(f) Recalling our remarks in the previous part, we see that the sign of F is positive
(meaning it's repulsive) for » < 0.2 nm.

(g) And the sign of F is negative (attractive) for » > 0.2 nm.

(h) At 7= 0.2 nm, the slope (hence, F) vanishes.
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133. (a) Sample Problem 8-3 illustrates simple energy conservation in a similar situation,

and derives the frequently encountered relationship: v = ~/2gh . In our present problem,
the height change is equal to the rod length L. Thus, using the suggested notation for the

speed, we have v, = \/2gL .

(b) At B the speed is (from Eq. 8-17)

v=alve +2gL =/4gL .

The direction of the centripetal acceleration (v/r = 4gL/L = 4g) is upward (at that
moment), as is the tension force. Thus, Newton’s second law gives

T-mg=m(4g) = T=>5mg.

(c) The difference in height between C and D is L, so the “loss” of mechanical energy
(which goes into thermal energy) is —mgL.

(d) The difference in height between B and D is 2L, so the total “loss” of mechanical
energy (which all goes into thermal energy) is —2mgL.
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134. (a) The force (SI units understood) from Eq. 8-20 is plotted in the graph below.

(b) The potential energy U(x) and the kinetic energy K(x) are shown in the next. The
potential energy curve begins at 4 and drops (until about x = 2); the kinetic energy curve
is the one that starts at zero and rises (until about x = 2).

4= -
ot ,// S,
..,
/ \\\fi{’.‘;’j
- ; \\\
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135. Let the amount of stretch of the spring be x. For the object to be in equilibrium
kx—mg=0=>x=mg/k.

Thus the gain in elastic potential energy for the spring is

2 2 2
Aue:lw:lk(EJ _mg
2 2 k 2k

while the loss in the gravitational potential energy of the system is

2 2
mg\|_mg

AU, =mgx =mg| — |=—"
= mge =g " ] ="

which we see (by comparing with the previous expression) is equal to 2AU,. The reason
why ‘AU g‘ # AU, is that, since the object is slowly lowered, an upward external force

(e.g., due to the hand) must have been exerted on the object during the lowering process,
preventing it from accelerating downward. This force does negative work on the object,
reducing the total mechanical energy of the system.
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1. We use Eq. 9-5 to solve for (x,,y,).

(a) The x coordinates of the system’s center of mass is:

_myx, +myx, +myx;  (2.00 kg)(=1.20 m)+(4.00 kg)(0.600 m)+(3.00 kg)x,

X
on m, +m, + m, 2.00 kg+4.00 kg+3.00 kg

=-0.500 m.

Solving the equation yields x3 = —1.50 m.
(b) The y coordinates of the system’s center of mass is:

gy, 4y, (2.00kg)(0.500 m)+(4.00 kg)(-0.750 m)-+(3.00 ke) y,
1 IR —— 2.00 kg +4.00 kg +3.00 kg
= 0.700 m.

Solving the equation yields y; =—1.43 m.
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2. Our notation is as follows: x; = 0 and y; = 0 are the coordinates of the m; = 3.0 kg
particle; x, = 2.0 m and y,> = 1.0 m are the coordinates of the m, = 4.0 kg particle; and, x3
= 1.0 m and y3 = 2.0 m are the coordinates of the m; = 8.0 kg particle.

(a) The x coordinate of the center of mass is

_omyx, +myx, +myx;  0+(4.0 kg)(2.0 m)+(8.0 kg)(1.0 m)

Xeom =1l.1m.
m, +m, +m, 3.0 kg+4.0 kg +8.0 kg
(b) The y coordinate of the center of mass is
b= my, +m,y, +m,y, _ 0+(4.0 kg)(l.O m)+(8.0 kg)(Z.O m) 1im

m, +m, +m, 3.0kg+4.0kg+8.0kg

(c) As the mass of m3, the topmost particle, is increased, the center of mass shifts toward
that particle. As we approach the limit where mjs is infinitely more massive than the
others, the center of mass becomes infinitesimally close to the position of m3.
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3. Since the plate is uniform, we can split it up into three rectangular pieces, with the
mass of each piece being proportional to its area and its center of mass being at its
geometric center. We’ll refer to the large 35 cm X 10 cm piece (shown to the left of the y
axis in Fig. 9-38) as section 1; it has 63.6% of the total area and its center of mass is at
(x1,1) =(=5.0 cm, —2.5 cm). The top 20 cm X 5 cm piece (section 2, in the first quadrant)
has 18.2% of the total area; its center of mass is at (x,,y,) = (10 cm, 12.5 cm). The bottom
10 cm x 10 cm piece (section 3) also has 18.2% of the total area; its center of mass is at
(x3,03) = (5 cm, —15 cm).

(a) The x coordinate of the center of mass for the plate is
Xeom = (0.636)x; + (0.182)x, + (0.182)x; =— 0.45 cm .
(b) The y coordinate of the center of mass for the plate is

Yeom = (0.636)y; + (0.182)y, + (0.182)y; =— 2.0 cm.

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

4. We will refer to the arrangement as a “table.” We locate the coordinate origin at the
left end of the tabletop (as shown in Fig. 9-37). With +x rightward and +y upward, then
the center of mass of the right leg is at (x,y) = (+L, —L/2), the center of mass of the left leg
is at (x,y) = (0, —L/2), and the center of mass of the tabletop is at (x,y) = (L/2, 0).

(a) The x coordinate of the (whole table) center of mass is

M (+L)+M(0)+3M (+L/2)
Xoom = =0.5L.
M+M+3M

With L =22 ¢cm, we have x¢om =11 cm.

(b) The y coordinate of the (whole table) center of mass is

_M(=L/2)+M(-L/2)+3M(0) L
Yeom = M+M+3M s

Of Yeom = — 4.4 cm.

From the coordinates, we see that the whole table center of mass is a small distance 4.4
cm directly below the middle of the tabletop.
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5. (a) By symmetry the center of mass is located on the axis of symmetry of the
molecule — the y axis. Therefore xcom = 0.

(b) To find ycom, We note that 3mpycom = MN(YN — Veom), Where yy is the distance from the
nitrogen atom to the plane containing the three hydrogen atoms:

Vu =\/(10.14><10-“ m)2 —(9.4x10™" m)2 =3.803x107"" m.

Thus,

14.0067)(3.803x10"'m
Voo = — NN =( ) )=3.13><10*”m
my +3m, 14.0067+3(1.00797)

where Appendix F has been used to find the masses.
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6. The centers of mass (with centimeters understood) for each of the five sides are as
follows:

(x,,»,,2,)=1(0,20,20) for the side in the yz plane
(x,,¥,,2,)=(20,0,20) for the side in the xz plane
(x5, 35,23) =(20,20,0) for the side in the xy plane

(x,,v4,2,) =(40,20,20) for the remaining side parallel to side 1
(x5, ¥5,25) =(20,40,20) for the remaining side parallel to side 2

Recognizing that all sides have the same mass m, we plug these into Eq. 9-5 to obtain the
results (the first two being expected based on the symmetry of the problem).

(a) The x coordinate of the center of mass is

_mx; +mx, + mx;+mx, +mx; _ 0+20+20+40+20 _

Xom 20 cm
Sm 5
(b) The y coordinate of the center of mass is
o = my, +my, +my; +my, +my; _ 20+0+20+20+40 ~90 em
Sm 5
(c) The z coordinate of the center of mass is
o = mz, +mz, +715123 +mz, +mzs _ 20+20+(5)+20+20 ~16 cm
m
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7. We use Eq. 9-5 to locate the coordinates.

(a) By symmetry x¢om = —d1/2 = —(13 cm)/2 = — 6.5 cm. The negative value is due to our
choice of the origin.

(b) We find ycom as

_ miycom,i +maycom,a _ in;ycom,[ +pal/aycm,a
o mi+ma - piI/i+paI/a
(11 cm/2)(7.85 glem® )+3(11 cm/2)(2.7 g/em’ )

= =8.3 cm.
7.85 g/lem’ +2.7 g/em’

(c) Again by symmetry, we have z¢om = (2.8 cm)/2 = 1.4 cm.
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8. (a) Since the can is uniform, its center of mass is at its geometrical center, a distance
H/2 above its base. The center of mass of the soda alone is at its geometrical center, a
distance x/2 above the base of the can. When the can is full this is H/2. Thus the center of
mass of the can and the soda it contains is a distance

e M(H/2)+m(H/2) H
- M +m 2

above the base, on the cylinder axis. With =12 cm, we obtain 7 = 6.0 cm.

(b) We now consider the can alone. The center of mass is H/2 = 6.0 cm above the base,
on the cylinder axis.

(c) As x decreases the center of mass of the soda in the can at first drops, then rises to H/2
= 6.0 cm again.

(d) When the top surface of the soda is a distance x above the base of the can, the mass of
the soda in the can is m, = m(x/H), where m is the mass when the can is full (x = H). The
center of mass of the soda alone is a distance x/2 above the base of the can. Hence

M(H/2)+m,(x/2) M(H/2)+m(x/H)(x/2) _ MH? +mx’

M+mp M+(mx/H) 2(MH+mx)'

We find the lowest position of the center of mass of the can and soda by setting the
derivative of 4 with respect to x equal to 0 and solving for x. The derivative is

dh 2mx  (ME+mx’)m oy’ 42 MmHx - MmH’
dx  2(MH +mx) 2(MH+mx)2 2(MH+mx)2 .

The solution to m*x> + 2MmHx — MmH* = 0 is

MH m
Xx=——o| -1+ /1+— |
m M

The positive root is used since x must be positive. Next, we substitute the expression
found for x into & = (MH* + mx*)/2(MH + mx). After some algebraic manipulation we

obtain
hzﬂ 1+ 4 =(12 cm)(0.14 kg) 1+%—1 =2.8 cm.
m M 1.31 kg 0.14 kg
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9. The implication in the problem regarding v, is that the olive and the nut start at rest.
Although we could proceed by analyzing the forces on each object, we prefer to approach
this using Eq. 9-14. The total force on the nut-olive system is F + F, = (—i +j) N. Thus,
Eq. 9-14 becomes

(-i+])N=Ma

com

where M = 2.0 kg. Thus, a =(—%§+%j) m/s>. Each component is constant, so we

com

apply the equations discussed in Chapters 2 and 4 and obtain

Av =

com

a, 1* =(—4.0 m)i+(4.0 m)j

|~

when ¢t = 4.0 s. It is perhaps instructive to work through this problem the long way
(separate analysis for the olive and the nut and then application of Eq. 9-5) since it helps
to point out the computational advantage of Eq. 9-14.
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10. Since the center of mass of the two-skater system does not move, both skaters will
end up at the center of mass of the system. Let the center of mass be a distance x from the

40-kg skater, then
(65 kg)(10 m—x) = (40 kg)x = x =62 m.

Thus the 40-kg skater will move by 6.2 m.
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11. We use the constant-acceleration equations of Table 2-1 (with +y downward and the
origin at the release point), Eq. 9-5 for ycom and Eq. 9-17 for v__.

(a) The location of the first stone (of mass m;) at £ =300 x 10~ s is
y1 = (1/2)gf* = (1/2)(9.8 m/s*) (300 x 107 s)* = 0.44 m,
and the location of the second stone (of mass m, = 2m;) at £ =300 x 107 s is
yo = (1/2)gf* = (1/2)(9.8 m/s*)(300 x 10 s — 100 x 10~ s)* = 0.20 m.
Thus, the center of mass is at

_my, +myy, m (044 m)+2m (020 m)

=028 m.
m, +m, m, +2m,

(b) The speed of the first stone at time ¢ is v; = gt, while that of the second stone is
vy =g(t—100x 107 s).
Thus, the center-of-mass speed at £ =300 x 10~ s is

oy, +myy, i (9-8m/s?)(300x107 s)+2m, (9.8 m/s® ) (300x107 s~100x107 s )
- m, +m, - m, +2m,
=2.3 m/s.

1%

com
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12. We use the constant-acceleration equations of Table 2-1 (with the origin at the traffic
light), Eq. 9-5 for x.om and Eq. 9-17 forv, . At ¢ = 3.0 s, the location of the automobile

(of mass m) is
x =tar’ =1(40m/s*)(30s) =18 m,

while that of the truck (of mass m;) is x, = v¢ = (8.0 m/s)(3.0s) = 24 m. The speed of the
automobile then is v, =ar =(4.0 m/sz)(3.0 s)=12 m/s, while the speed of the truck

remains v, = 8.0 m/s.

(a) The location of their center of mass is

_ mx,+myx, _ (1000 kg)(18 m)+(2000 kg)(24 m)

Xcom - =22 m.
m, +m, 1000 kg+2000 kg
(b) The speed of the center of mass is
_my +my, (1000 kg)(12 m/s)+(2000 kg)(8.0 m/s) C03m/s

A%
N +m, 1000 kg +2000 kg
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13. (a) The net force on the system (of total mass m; + m,) is m,g. Thus, Newton’s
second la\iv leads to a = g(m,/( m, + m,)) = 0.4g. For blockl, this acceleratign is to the
right (the 1 direction), and for block 2 this is an acceleration downward (the —j direction).
Therefore, Eq. 9-18 gives

L ma tma,  (0.6)(0.4gi)+ (0.4)(-0.4g]) \ .
Acom = m, + m, = 0.6 +04 = (2351—157])1’1’1/8 .

(b) Integrating Eq. 4-16, we obtain

Veom =(2.351-1.57]) ¢

(with SI units understood), since it started at rest. We note that the ratio of the y-
component to the x-component (for the velocity vector) does not change with time, and it
is that ratio which determines the angle of the velocity vector (by Eq. 3-6), and thus the
direction of motion for the center of mass of the system.

(c) The last sentence of our answer for part (b) implies that the path of the center-of-mass
is a straight line.

(d) Eq. 3-6 leads to 8 = —34°. The path of the center of mass is therefore straight, at
downward angle 34°.
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14. (a) The phrase (in the problem statement) “such that it [particle 2] always stays
directly above particle 1 during the flight” means that the shadow (as if a light were
directly above the particles shining down on them) of particle 2 coincides with the
position of particle 1, at each moment. We say, in this case, that they are vertically
aligned. Because of that alignment, v», = v; = 10.0 m/s. Because the initial value of v, is
given as 20.0 m/s, then (using the Pythagorean theorem) we must have

vy, =/v; —v;. = /300 m/s

for the initial value of the y component of particle 2’s velocity. Eq. 2-16 (or conservation
of energy) readily yields ymax = 300/19.6 = 15.3 m. Thus, we obtain

Hinax = Mo Ymax /Mioral = (3.00 g)(15.3 m)/(8.00 g) = 5.74 m.

(b) Since both particles have the same horizontal velocity, and particle 2’s vertical
component of velocity vanishes at that highest point, then the center of mass velocity

then is simply (10.0 m/ s)f (as one can verify using Eq. 9-17).

(c) Only particle 2 experiences any acceleration (the free fall acceleration downward), so
Eq. 9-18 (or Eq. 9-19) leads to

deom = M2 g Mo = (3.00 )(9.8 m/s%)/(8.00 g) = 3.68 m/s”

for the magnitude of the downward acceleration of the center of mass of this system.
Thus, a_ =(-3.68 m/s*)].

Ci
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15. We need to find the coordinates of the point where the shell explodes and the velocity
of the fragment that does not fall straight down. The coordinate origin is at the firing
point, the +x axis is rightward, and the +y direction is upward. The y component of the
velocity is given by v = vy, — gt and this is zero at time ¢ = vy /g = (vo/g) sin &, where vy
is the initial speed and 6 is the firing angle. The coordinates of the highest point on the
trajectory are

Vv (20 m/s)”
X =V, t=v,tcosf, =—sing, cos b, =Tsm 60°c0s60°=17.7 m
s
and
1 1V 1(20 m/s)’ _, .
y=v,t——gt’ =—sin’ 6, =—ﬂsm2 60" =153 m.
-2 2 g 2 98m/s

Since no horizontal forces act, the horizontal component of the momentum is conserved.
Since one fragment has a velocity of zero after the explosion, the momentum of the other
equals the momentum of the shell before the explosion. At the highest point the velocity
of the shell is vy cos@, in the positive x direction. Let M be the mass of the shell and let
Vo be the velocity of the fragment. Then Mvocos@ = MVy/2, since the mass of the
fragment is M/2. This means

V, =2v,c0s6, =2(20 m/s)cos60 =20 m/s.

This information is used in the form of initial conditions for a projectile motion problem
to determine where the fragment lands. Resetting our clock, we now analyze a projectile
launched horizontally at time ¢ = 0 with a speed of 20 m/s from a location having

coordinates xo = 17.7 m, yo = 15.3 m. Its y coordinate is given by y =y, -+ gt’*, and

when it lands this is zero. The time of landing is # = ,/2y,/ g and the x coordinate of the

landing point is

2(153 m)

2

x=x, V= x4V |22 =177 m+ (20 m/s)

g 98 m/s

=53m
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16. We denote the mass of Ricardo as M and that of Carmelita as M. Let the center of
mass of the two-person system (assumed to be closer to Ricardo) be a distance x from the
middle of the canoe of length L and mass m. Then

Mp(L/2 — x) = mx + Mc(L/2 + x).

Now, after they switch positions, the center of the canoe has moved a distance 2x from its
initial position. Therefore, x = 40 cm/2 = 0.20 m, which we substitute into the above

equation to solve for M¢:

3 MR(L/2—X)—mx _ (80)(%_0-20)_(30)(0'20) =58 kg.

¢ L/2+x (3.0/2)+0.20
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17. There is no net horizontal force on the dog-boat system, so their center of mass does
not move. Therefore by Eq. 9-16, MAx,_ =0=m,Ax, +m,Ax,, which implies

m
_my
|Axh|——|Axd|.
my,

Now we express the geometrical condition that relative to the boat the dog has moved a
distance d = 2.4 m:

[Axy | +|Ax, [ =d

which accounts for the fact that the dog moves one way and the boat moves the other. We
substitute for |Ax;,| from above:

m
— (Axd)‘+|Axd| =d

m,

d _ 24m 1
l+m,/m, 1+(45/18)

which leads to |Axd | =

The dog is therefore 1.9 m closer to the shore than initially (where it was D = 6.1 m from
it). Thus, it is now D —|Ax,| = 4.2 m from the shore.
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18. The magnitude of the ball’s momentum change is

Ap= ‘mv,. —mvf‘ =(0.70 kg)‘S.O m/s—(-2.0 m/ s)‘ =49 kg-m/s.
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19. (a) The change in kinetic energy is

AKzlmv2
2

2 —%mvf =%(2100 kg)((51knvh)® ~(41 km/h)’)

=9.66x10* kg (km/h)’ ((10° m/km)(1 b/3600'5))
=7.5%10* J.

(b) The magnitude of the change in velocity is

A7) = (=0, +(v, )" = /(=41 km/h)’ +(51 knvh)” = 65.4 kmvh

so the magnitude of the change in momentum is

1000 m/ km

Ap|=m|Av|=(2100 kg)(65.4 km/h
51 = |1 = (2100 k) (654 k) 1500

j:3.8><104 kg-m/s.

(c) The vector Ap points at an angle & south of east, where

6=tan"!| 2 | = tanl(mj =39°,
v, STkm/h
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20. (a) Since the force of impact on the ball is in the y direction, p, is conserved:
DPxi= mv;sin@ = p;r=my; sin 6.

With 6, =30.0°, we find & = 30.0°.

(b) The momentum change is

~ ~

Ap =mv, cos 6, (—J)—mvi cos 6, (+3) =-2(0.165 kg) (2.00 m/s) (cos30°)]
= (-0.572 kg - m/s);.
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21. We use coordinates with +x horizontally toward the pitcher and +y upward. Angles
are measured counterclockwise from the +x axis. Mass, velocity and momentum units are

SI. Thus, the initial momentum can be written p, =(4.54215°) in magnitude-angle

notation.
(a) In magnitude-angle notation, the momentum change is
(6.0 £ —90°)— (4.5 £ 215°)=(5.0 £—43°)

(efficiently done with a vector-capable calculator in polar mode). The magnitude of the
momentum change is therefore 5.0 kg- m/s.

(b) The momentum change is (6.0 £ 0°) — (4.5 £ 215°) = (10 £ 15°). Thus, the
magnitude of the momentum change is 10 kg- m/s.
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22. We infer from the graph that the horizontal component of momentum p; is 4.0 kg-m/s.
Also, its initial magnitude of momentum p, is 6.0 kg-m/s. Thus,

005902% — = 48°.

[}
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23. The initial direction of motion is in the +x direction. The magnitude of the average
force Fay, 1s given by
J 32.4 N-s

g =——=——————=1.20x10° N
¢ At 2.70x107 s

The force is in the negative direction. Using the linear momentum-impulse theorem
stated in Eq. 9-31, we have

—FaveAt = mvy— mv;.

where m is the mass, v; the initial velocity, and v, the final velocity of the ball. Thus,

L A (0.40kg)(14m/s)—(1200N)(27x107s)
/ m 0.40kg

=—67m/s.

(a) The final speed of the ball is | v, [=67 m/s.

(b) The negative sign indicates that the velocity is in the —x direction, which is opposite to
the initial direction of travel.

(c) From the above, the average magnitude of the force is F,, =1.20x10° N .

avg

(d) The direction of the impulse on the ball is —x, same as the applied force.
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24. (a) By energy conservation, the speed of the victim when he falls to the floor is

%mv2 =mgh = v=./2gh :\/2(9.8 m/s*)(0.50 m) =3.1m/s.

Thus, the magnitude of the impulse is
J=|Ap|=m|Av|=mv=(70kg)(3.1m/s)=2.2x10° N-s.
(b) With duration of Ar=0.082s for the collision, the average force is

J _22x10°N-s

L =—= ~2.7x10° N.
.Y, 0.082's
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25. We estimate his mass in the neighborhood of 70 kg and compute the upward force F’
of the water from Newton’s second law: F' —mg = ma , where we have chosen +y upward,

so that a > 0 (the acceleration is upward since it represents a deceleration of his
downward motion through the water). His speed when he arrives at the surface of the

water is found either from Eq. 2-16 or from energy conservation: v =,/2gh , where
h=12 m, and since the deceleration a reduces the speed to zero over a distance d = 0.30
m we also obtain v =+/2ad. We use these observations in the following.

Equating our two expressions for v leads to a = gh/d. Our force equation, then, leads to

h h
)= m{1 )

which yields F = 2.8 x 10* kg. Since we are not at all certain of his mass, we express this
as a guessed-at range (in kN) 25 < F' < 30.

Since F > mg, the impulse J due to the net force (while he is in contact with the water)
is overwhelmingly caused by the upward force of the water: IF dt=J to a good
approximation. Thus, by Eq. 9-29,

[ Fdt=p, - b, =0-m(—\2gh)

(the minus sign with the initial velocity is due to the fact that downward is the negative
direction) which yields (70 kg)\/2(9.8 rn/sz)(lz m) =1.1x10°kg-m/s. Expressing this as

a range we estimate

1.0x10°kg-m/s < [Fdt <1.2x10°kg-m/s.
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26. We choose +y upward, which implies a > 0 (the acceleration is upward since it
represents a deceleration of his downward motion through the snow).

(a) The maximum deceleration am,x of the paratrooper (of mass m and initial speed v = 56
m/s) is found from Newton’s second law
F;HOW - mg = mamax

where we require Fipow = 1.2 X 10° N. Using Eq. 2-15 V= 2amaxd, we find the minimum
depth of snow for the man to survive:

2 2 2
d=—" = my = (85kg)(S6m/s) =1.1 m.
20y, 2(Fu—mg)  2(1.2x10°N)

(b) His short trip through the snow involves a change in momentum

Ap=p,—p,=0—(85kg)(-56m/s)=-4.8x10"kg-m/s,

or | Ap |=4.8x10° kg-m/s. The negative value of the initial velocity is due to the fact that

downward is the negative direction. By the impulse-momentum theorem, this equals the
impulse due to the net force Fy,ow — mg, but since F,__ > mg we can approximate this

Snow

as the impulse on him just from the snow.
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27. We choose +y upward, which means v, =-25m/s and ¥, =+10m/s. During the

collision, we make the reasonable approximation that the net force on the ball is equal to
Fave — the average force exerted by the floor up on the ball.

(a) Using the impulse momentum theorem (Eq. 9-31) we find

J=my, —mv, =(12)(10)—(12)(-25)=42kg-m/s.

(b) From Eq. 9-35, we obtain
E, S 2 _heN
£ At 0020
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28. (a) The magnitude of the impulse is
J=|Ap|=m|Av|=mv=(0.70kg)(13m/s) =9.1kg-m/s=9.1 N -s.
(b) With duration of At =5.0x10" s for the collision, the average force is

J 91N-s

e =—=————=18%10"N.
£ At 5.0x107s
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29. We choose the positive direction in the direction of rebound so that v, >0 and
v, <0. Since they have the same speed v, we write this as v, =v and v, = —v. Therefore,
the change in momentum for each bullet of mass m is Ap = mAv =2mv. Consequently,

the total change in momentum for the 100 bullets (each minute) AP =100Ap = 200mv.
The average force is then

Fop =

= zSN.

AP (200)(3x107°kg)(500m/s)
At (Imin)(60s/min)
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30. (a) By the impulse-momentum theorem (Eq. 9-31) the change in momentum must

equal the “area” under the F(¢) curve. Using the facts that the area of a triangle is %

(base)(height), and that of a rectangle is (height)(width), we find the momentum at 1 =4 s
to be (30 kgm/s)1.

(b) Similarly (but keeping in mind that areas beneath the axis are counted negatively) we
find the momentum at =7 s is (38 kg'm/s)1.

(c) Att=9 s, we obtain 5 = (6.0 m/s)I.
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31. We use coordinates with +x rightward and +y upward, with the usual conventions for
measuring the angles (so that the initial angle becomes 180 + 35 = 215°). Using SI units
and magnitude-angle notation (efficient to work with when using a vector-capable
calculator), the change in momentum is

J=Ap= P, =P, =(3.00£90°)—(3.60£215°) =(5.86£59.8°).
(a) The magnitude of the impulse is J =Ap=5.86 kg-m/s=5.86 N-s.

(b) The direction of J is 59.8° measured counterclockwise from the +x axis.

(c) Eq. 9-35 leads to

J=F Ar=5.86N-s = > 86 N-s

' e =~ ~2.93x10°N.
: £ 2.00x107s

We note that this force is very much larger than the weight of the ball, which justifies our
(implicit) assumption that gravity played no significant role in the collision.

(d) The direction of F__ is the same as J, 59.8° measured counterclockwise from the +x

avg

axis.
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32. (a) Choosing upward as the positive direction, the momentum change of the foot is
Ap =0—m, V. =—(0.003 kg) (—1.50 m/s)=4.50x10" Ns.
(b) Using Eq. 9-35 and now treating downward as the positive direction, we have

J=F At=m, g At=(0.090 kg)(9.80 m/s?)(0.60s) =0.529 N -s.

avg

(c) Push is what provides the primary support.
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33. (a) By energy conservation, the speed of the passenger when the elevator hits the
floor is

%mv2 =mgh = v=./2gh :\/2(9.8 m/s*)(36 m) = 26.6 m/s.

Thus, the magnitude of the impulse is
J=|Ap|=m|Av|=mv=(90 kg)(26.6 m/s) = 2.39x10° N s,
(b) With duration of At =5.0x10" s for the collision, the average force is

J 239x10° N-s

== — > =~478x10° N.
® A 5.0x107s

(c) If the passenger were to jump upward with a speed of v'=7.0 m/s, then the resulting
downward velocity would be

Vi=y—1v'=26.6m/s—7.0m/s =19.6 m/s,
and the magnitude of the impulse becomes
J =|Ap" |=m| AV |=mv" = (90 kg)(19.6 m/s) =1.76x10° N -s.
(d) The corresponding average force would be

7 J” 1.76x10° N s

v == —— =~3.52x10° N,
® At 5.0%x107s
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34. (a) By Eq. 9-30, impulse can be determined from the “area” under the F(¢) curve.
Keeping in mind that the area of a triangle is %(base)(height), we find the impulse in this
case is 1.00 N's.

(b) By definition (of the average of function, in the calculus sense) the average force must
be the result of part (a) divided by the time (0.010 s). Thus, the average force is found to
be 100 N.

(c) Consider ten hits. Thinking of ten hits as 10 F(#) triangles, our total time interval is
10(0.050 s) = 0.50 s, and the total area is 10(1.0 N's). We thus obtain an average force of
10/0.50 = 20.0 N. One could consider 15 hits, 17 hits, and so on, and still arrive at this
same answer.
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35. (a) We take the force to be in the positive direction, at least for earlier times. Then the
impulse is

J=[" " Far = [ 104[(6.0><106)1—(2.0><109)12]dz

3.0x1073
=F(6.0x106)z2—1(2.0x109)t3}
2 3
0
=9.0N-s.
(b) Since J = Fiyg At, we find
J__9ONs S 100 N

A 3.0 % 107 s

(c) To find the time at which the maximum force occurs, we set the derivative of F' with
respect to time equal to zero — and solve for 7. The result is = 1.5 X 107 s. At that time
the force 1s

Fio = (6.0x10°)(15x107) = (2.0%10°)(15% 107)° =4.5% 10° N,

(d) Since it starts from rest, the ball acquires momentum equal to the impulse from the
kick. Let m be the mass of the ball and v its speed as it leaves the foot. Then,

V =—=—= = 20 m/s.

p_J _90N-s
m m 0.45kg
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36. From Fig. 9-55, +y corresponds to the direction of the rebound (directly away from
the wall) and +x towards the right. Using unit-vector notation, the ball’s initial and final
velocities are

v, =vcos9§—vsin93=5.2 f—3.03’

v, :vcos¢9§+vsin6’j=5.2 f+3.03

respectively (with SI units understood).

(a) With m = 0.30 kg, the impulse-momentum theorem (Eq. 9-31) yields

J=mv, —m¥,=2(0.30 kg)(3.0 m/s j) =(1.8 N-s)]

(b) Using Eq. 9-35, the force on the ball by the wall is j/At = (1.8/0.010)3 = (180N)3'.

By Newton’s third law, the force on the wall by the ball is (—180 N)j (that 1is, its

magnitude is 180 N and its direction is directly into the wall, or “down” in the view
provided by Fig. 9-55).
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37. We choose our positive direction in the direction of the rebound (so the ball’s initial
velocity is negative-valued). We evaluate the integral J = IF dt by adding the
appropriate areas (of a triangle, a rectangle, and another triangle) shown in the graph (but

with the ¢ converted to seconds). With m = 0.058 kg and v = 34 m/s, we apply the
impulse-momentum theorem:

IF dt=mv, —mv, = Jj'oodet+ f:oodet+ f:OTth =m(+v)—m(-v)

wall

max max max

= F (00025)4 Fyy (0.0025) +2 F,,, (0.0025) = 2my

which yields F

max

0.004s)=2(0.058ke)(34m/s)=9.9 x 10° N.
( )=2( g)(34m/s)
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38. (a) Performing the integral (from time a to time b) indicated in Eq. 9-30, we obtain
[[2-3)di=120-a)-(v* ~a)

in ST units. If 5= 1.25 s and a = 0.50 s, this gives 7.17 N's.

(b) This integral (the impulse) relates to the change of momentum in Eq. 9-31. We note
that the force is zero at # = 2.00 s. Evaluating the above expression for a =0 and b =2.00
gives an answer of 16.0 kg'm/s.
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39. No external forces with horizontal components act on the man-stone system and the
vertical forces sum to zero, so the total momentum of the system is conserved. Since the
man and the stone are initially at rest, the total momentum is zero both before and after
the stone is kicked. Let m, be the mass of the stone and v, be its velocity after it is kicked;
let m,, be the mass of the man and v,, be his velocity after he kicks the stone. Then

myvs + muv, =0 — v, = —mgv/m,,.
We take the axis to be positive in the direction of motion of the stone. Then

0.068 kg)(4.0 m/
y, = QOSBR)EOMS) 510 s,
91kg

or |v, |=3.0x10" m/s. The negative sign indicates that the man moves in the direction
opposite to the direction of motion of the stone.
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40. Our notation is as follows: the mass of the motor is AM; the mass of the module is m;
the initial speed of the system is vp; the relative speed between the motor and the module
is v,; and, the speed of the module relative to the Earth is v after the separation.
Conservation of linear momentum requires

(M + m)vog=mv + M(v —v,).
Therefore,

My,

_ 4300 km/ b+ (7)(82 km /h)

=44%10° km/h.
M+m dm+m

v=y,+

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

41. With ¥, =(9.51+4.0 j) m/s, the initial speed is

vy =V V2 =405 m/s)” + (4.0 m/s)’ =10.31m/s

and the takeoff angle of the athlete is

v
0, =tan"'| 22 |=tan™' (ﬂj =22.8°.
Vio 9.5

Using Equation 4-26, the range of the athlete without using halteres is

_v;sin26,  (10.31m/s)’ sin 2(22.8°)

R
0 g 9.8 m/s’

=7.75 m.

On the other hand, if two halteres of mass m = 5.50 kg were thrown at the maximum
height, then, by momentum conservation, the subsequent speed of the athlete would be

M +2m

4 ’
M +2myy =My, =V = Vo

Thus, the change in the x-component of the velocity is

M +2m 2m 2(5.5kg)
va x0 = _VXO S —
M M 78 kg

/7
Avx - vx _va -

(9.5m/s)=1.34 m/s.

The maximum height is attained when v, =v ;—gr=0, or

vyo _ 4.0 m/s
g  9.8m/s?

Therefore, the increase in range with use of halteres is

AR =(Av))t = (1.34 m/s)(0.415) =0.55 m.
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42. Our +x direction is east and +y direction is north. The linear momenta for the two m =
2.0 kg parts are then

Dy =myv, =mv, ]
where v; = 3.0 m/s, and

A A

Dy, =my, = m(sz i+v,, j) =mv, (cos@i + sin@j)

where v, = 5.0 m/s and €= 30°. The combined linear momentum of both parts is then

A

P=P,+ P, =mv, j+mv, (cosH§+sin93)=(mv2 c0s )i+ (mv, +mv, sin @)

=(2.0 kg)(5.0 m/s)(cos30°)i+(2.0 kg)(3.0 m/s+(5.0 m/s)(sin30°))
=(8.661+11j) keg-ms.

From conservation of linear momentum we know that this is also the linear momentum of
the whole kit before it splits. Thus the speed of the 4.0-kg kit is

P2+ P 8.66 ke-m/s)’ +(11 kg -m/s)’
V:iz r 7 :\/( g S) ( g s) =3.5 m/s.
M M 4.0 kg
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43. (a) With SI units understood, the velocity of block L (in the frame of reference

indicated in the figure that goes with the problem) is (v, — 3)i . Thus, momentum
conservation (for the explosion at ¢ = 0) gives

my (V] — 3) + (m(j + mR)V1 =0

which leads to

_ 3m _3Q2kg) _
Vi = mL+mC+mR - IOkg - 0.60111/8.

Next, at = 0.80 s, momentum conservation (for the second explosion) gives
me vy + mp(vy + 3) = (mc + mgp)v; = (8 kg)(0.60 m/s) = 4.8 kg-m/s.
This yields v, = — 0.15. Thus, the velocity of block C after the second explosion is
Vs =—(0.15 m/s)1.

(b) Between ¢ = 0 and ¢ = 0.80 s, the block moves v;Ar = (0.60 m/s)(0.80 s) = 0.48 m.
Between t = 0.80 s and = 2.80 s, it moves an additional

VAt = (~0.15 m/s)(2.00 s) = — 0.30 m.

Its net displacement since ¢ = 0 is therefore 0.48 m — 0.30 m = 0.18 m.
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44. Our notation (and, implicitly, our choice of coordinate system) is as follows: the mass
of the original body is m; its initial velocity is v, = v1 ; the mass of the less massive piece
1s my; its velocity is v, = 0; and, the mass of the more massive piece is m,. We note that

the conditions m, = 3m, (specified in the problem) and m; + m; = m generally assumed in
classical physics (before Einstein) lead us to conclude

3
m,=—m and m, =—m.
4 4
Conservation of linear momentum requires

A

— — — 3 —
my,=my,+m,v, = mvi=0+—my,
4

. . 4 - . . . .
which leads to v, = Ev 1. The increase in the system’s kinetic energy is therefore
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45. Our notation (and, implicitly, our choice of coordinate system) is as follows: the mass
of one piece is m; = m; its velocity is v, = (=30 m/s )i ; the mass of the second piece is m,

= m; its velocity is v, = (=30 rn/s)j ; and, the mass of the third piece is m3 = 3m.
(a) Conservation of linear momentum requires

mv, =myv, +m,v, +myy, = 0=m(—30i)+m(—303)+3m\73
which leads tov, = (101 +103’) m/s. Its magnitude is v, = 102 =14m/s.

(b) The direction is 45° counterclockwise from +x (in this system where we have m;
flying off in the —x direction and m; flying off in the —y direction).
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46. We can think of the sliding-until-stopping as an example of kinetic energy converting
into thermal energy (see Eq. 8-29 and Eq. 6-2, with Fy = mg). This leads to v* = 2ugd
being true separately for each piece. Thus we can set up a ratio:

() - st 12
Vo)  2uggdr 25

But (by the conservation of momentum) the ratio of speeds must be inversely
proportional to the ratio of masses (since the initial momentum — before the explosion —
was zero). Consequently,

2
12
(@j =25 = m=3\3m=139kg

mp

Therefore, the total mass is my; +m; = 3.4 kg.
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47. Our notation is as follows: the mass of the original body is M = 20.0 kg; its initial
velocity is v, =(200 m/s)i ; the mass of one fragment is m; = 10.0 kg; its velocity is

v, =(-100 m/s)j ; the mass of the second fragment is m; = 4.0 kg; its velocity is
v, =(=500 rn/sﬁ ; and, the mass of the third fragment is m3 = 6.00 kg.

(a) Conservation of linear momentum requires Mv,, = mv, + m,v, + m;v,, which (using the
above information) leads to

7, =(1.00x10°1—0.167x10%]) m/s.

The magnitude of v, is v, = \/(1000 m/s)’ + (=167 m/s)> =1.01x10° m/s . It points at
@ =tan"' (—167/1000) =—9.48° (that is, at 9.5° measured clockwise from the +x axis).

(b) We are asked to calculate AK or

1 1 1 1
(Emlvf +5m2v22 +Em3v32j—5Mv§ =323x10° J.
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48. This problem involves both mechanical energy conservation U, = K, + K, , where U;
=60 J, and momentum conservation

0=my, +m,v,

where m, = 2m;. From the second equation, we find |v,|=2|v,| which in turn implies
(since v, = |v,| and likewise for v,)

1 11 2 1
K, =Em1V12 :E(Emz)(zvz) :2(5”12"22):2[{2'

(a) We substitute K; = 2K, into the energy conservation relation and find
U =2K,+K, =K, :éU,. =201J.

(b) And we obtain K; =2(20) =40 J.
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49. We refer to the discussion in the textbook (see Sample Problem 9-8, which uses the
same notation that we use here) for many of the important details in the reasoning. Here
we only present the primary computational step (using SI units):

v= " agh = S0 2O 0.12) = 3.1x10° m/s
, .
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50. (a) We choose +x along the initial direction of motion and apply momentum
conservation:
MyieV; = MygigVy + MijoaVs

(52 2)(672m/s)=(5.2 g)(428 m/s) + (700 g)v,

which yields v, = 1.81 m/s.

(b) It is a consequence of momentum conservation that the velocity of the center of mass
is unchanged by the collision. We choose to evaluate it before the collision:

= mbullet‘_}i _(5.2g)(672 m/s)

vcom = 496 m/s.
Myiier T Myjock 52 ¢g+700¢g
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51. With an initial speed of v,, the initial kinetic energy of the car is K, =m v’ /2. After
a totally inelastic collision with a moose of mass m,, by momentum conservation, the
speed of the combined system is

m.yv,

Cc 1

my, =(m,+m, )vf = v, = ,
m,+m,

with final kinetic energy

2 2
m.v, j 1 m; )
1
2m,+m,

1 , 1
K, =—(m +m ), =—(m, +m =— V.
f 2( c m) f 2( c m)(mc_l_mm

(a) The percentage loss of kinetic energy due to collision is

AK K, -K, K, m, m, 500 kg 113 30
— = = = —= . 0.
K, K, K, m,+m, m +m, 1000kg+500kg 3

(b) If the collision were with a camel of mass m__ . =300 kg, then the percentage loss of

camel

kinetic energy would be

AK m

K. m +m

1

__ 300kg 3,
1000 kg+300kg 13

camel

camel

(c) As the animal mass decreases, the percentage loss of kinetic energy also decreases.
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52. (a) The magnitude of the deceleration of each of the cars is a = f/m = . mg/m = pg.
If a car stops in distance d, then its speed v just after impact is obtained from Eq. 2-16:

Vv =vi +2ad = v=+/2ad = \/Z,ukgd

since v = 0 (this could alternatively have been derived using Eq. 8-31). Thus,

v, =21,8d, =/2(0.13)(9.8 m/s*)(8.2 m) = 4.6 mys.

(b) Similarly, v, = /242, 2d, =+/2(0.13)(9.8 m/s’)(6.1 m) =3.9 m/s.
B k B

(c) Let the speed of car B be v just before the impact. Conservation of linear momentum
gives mpv = myvy + mpvp, or

Ly, +myvy) _ (1100)(4.6)+(1400)(3.9)
- my - 1400

=7.5m/s.

(d) The conservation of linear momentum during the impact depends on the fact that the
only significant force (during impact of duration At) is the force of contact between the
bodies. In this case, that implies that the force of friction exerted by the road on the cars
is neglected during the brief Az. This neglect would introduce some error in the analysis.
Related to this is the assumption we are making that the transfer of momentum occurs at
one location — that the cars do not slide appreciably during A¢ — which is certainly an
approximation (though probably a good one). Another source of error is the application
of the friction relation Eq. 6-2 for the sliding portion of the problem (after the impact);
friction is a complex force that Eq. 6-2 only partially describes.
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53. In solving this problem, our +x direction is to the right (so all velocities are positive-
valued).

(a) We apply momentum conservation to relate the situation just before the bullet strikes
the second block to the situation where the bullet is embedded within the block.

(0.0035 kg)v = (1.8035 ke)(1.4 m/s) = v=721 m/s.

(b) We apply momentum conservation to relate the situation just before the bullet strikes
the first block to the instant it has passed through it (having speed v found in part (a)).

(0.0035 kg)v, =(1.20 kg)(0.630 m/s)+(0.00350 kg)(721 m/s)

which yields vo = 937 m/s.
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54. We think of this as having two parts: the first is the collision itself — where the bullet
passes through the block so quickly that the block has not had time to move through any
distance yet — and then the subsequent “leap” of the block into the air (up to height 4
measured from its initial position). The first part involves momentum conservation (with
+y upward):

(0.01kg)(1000m/s) = (5.0kg)v +(0.01kg) (400 m/s)

which yields v =1.2m/s. The second part involves either the free-fall equations from Ch.

2 (since we are ignoring air friction) or simple energy conservation from Ch. 8. Choosing
the latter approach, we have

%(5.0 kg)(12m/s)” = (50kg)(9.8m/s’) A

which gives the result 2 =0.073 m.
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55. (a) Let v be the final velocity of the ball-gun system. Since the total momentum of the
system is conserved mv; = (m + M)v. Therefore,

my, _ (60 g)(22 m/s)

y= =4.4 m/s.
m+M 60g+240 g

(b) The initial kinetic energy is K,=1mv} and the final kinetic energy is
K, =%(m+ MW =1m>v} [(m+ M). The problem indicates AE, =0, so the difference
K; — Kymust equal the energy Uj stored in the spring:

2.2
U;:lmvf—l Vi :lmV,.z(l— ” j:lmv.2 M
T2 T M) 2

Consequently, the fraction of the initial kinetic energy that becomes stored in the spring
is
U M 240

S = = =0.80.
K m+M 60+240

1
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56. The total momentum immediately before the collision (with +x upward) is

pi= (3.0 kg)(20 m/s) + (2.0 kg)( —12 m/s) = 36 kg-m/s.
Their momentum immediately after, when they constitute a combined mass of M = 5.0
kg, is pr= (5.0 kg)v . By conservation of momentum, then, we obtainv = 7.2 m/s, which
becomes their "initial" velocity for their subsequent free-fall motion. We can use Ch. 2
methods or energy methods to analyze this subsequent motion; we choose the latter. The

level of their collision provides the reference (y = 0) position for the gravitational
potential energy, and we obtain

1
Ko+Up = K+U = SMi+0 = 0+Mgymx.

Thus, with vo = 7.2 m/s, we find ypa.x = 2.6 m.
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57. We choose +x in the direction of (initial) motion of the blocks, which have masses m;
=5 kg and my = 10 kg. Where units are not shown in the following, SI units are to be

understood.
(a) Momentum conservation leads to
myy; +myv,, =my, , +m,v,,

(5kg)(3.0m/s)+(10kg)(2.0 m/s) = (5 kg)v, , +(10 kg)(2.5 m/s)

which yields v, =2.0m/s. Thus, the speed of the 5.0 kg block immediately after the

collision is 2.0m/s.

(b) We find the reduction in total kinetic energy:

_%(5 kg)(2 m/s)’ —%(10 kg)(2.5m/s)’

1

1 2 1 2

KA—K/,:E(Skg)(3m/s) +E(10kg)(2m/s)
=-125)J =-131.

(c) In this new scenario where v,, =4.0m/s , momentum conservation leads to

v, =—10m/s and we obtain AK =+4017J .

(d) The creation of additional kinetic energy is possible if, say, some gunpowder were on
the surface where the impact occurred (initially stored chemical energy would then be

contributing to the result).
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58. We think of this as having two parts: the first is the collision itself — where the blocks
“join” so quickly that the 1.0-kg block has not had time to move through any distance
yet — and then the subsequent motion of the 3.0 kg system as it compresses the spring to
the maximum amount x,,. The first part involves momentum conservation (with +x
rightward):

mvi = (m+tmy)v = (2.0 kg)(4.0 m/s) = (3.0 kg)v

which yields ¥ =2.7m/s. The second part involves mechanical energy conservation:
1 , 1 )
5(3.0 kg) (2.7 m/s) =5 (200 N/m)x;,

which gives the result x,, = 0.33 m.
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59. As hinted in the problem statement, the velocity v of the system as a whole — when
the spring reaches the maximum compression xy, — satisfies

mivi; + mavy; = (my + mo)v.
The change in kinetic energy of the system is therefore

1 1 1 S+ )1
AK =—(m; +m, )Vz __mlvlzi __mzvzzi = (v + ) __mlvlzi __mZV;
2 2 2 2(m, +m,) 2 2

which yields AK = -35 J. (Although it is not necessary to do so, still it is worth noting
that algebraic manipulation of the above expression leads to |AK| =§(M) v2, where

my+my rel

Vrel = V1 — 7). Conservation of energy then requires

0.25m

Lo =-ak = x, = \/_m _ \/—2(—35 D _

k 1120 N/m
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60. (a) Let m; be the mass of one sphere, v; be its velocity before the collision, and visbe
its velocity after the collision. Let m, be the mass of the other sphere, v»; be its velocity
before the collision, and vy, be its velocity after the collision. Then, according to Eq.
9-75,
Vip = A vyt 2, Vs
m, +m, m, +m,

i.

Suppose sphere 1 is originally traveling in the positive direction and is at rest after the
collision. Sphere 2 is originally traveling in the negative direction. Replace v; with v, vy;
with —v, and vy, with zero to obtain 0 = m; — 3m». Thus,

m,=m, /3=(300g)/3=100g.

(b) We use the velocities before the collision to compute the velocity of the center of
mass:

LTty (300g) (2.00 m/s)+(100 g) (—2.00 m/s)

om =1.00 m/s.
m, +m, 300g+100¢g
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61. (a) Let m; be the mass of the cart that is originally moving, v;; be its velocity before
the collision, and vy be its velocity after the collision. Let m, be the mass of the cart that
is originally at rest and v,/ be its velocity after the collision. Then, according to Eq. 9-67,

m,—m
v, =——2v,
’ m, +m2

Using SI units (so m; = 0.34 kg), we obtain

= T 2 m/s +0.66 mUs

Vli_vlf 1.2 m/s—0.66 m/s
Vi; +V1f

) (0.34 kg) = 0.099 kg.

(b) The velocity of the second cart is given by Eq. 9-68:

Vay

2m, _( 2(0.34 kg)
i =

(1.2 m/s) =1.9 nvs.
0.34 kg +0.099 kg

m, +m2

(c) The speed of the center of mass is

_myy, +myy,. (034)(12)+0
on m, +m, 0.34+0.099

% =093 m/s.

Values for the initial velocities were used but the same result is obtained if values for the
final velocities are used.
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62. (a) Let ma be the mass of the block on the left, va; be its initial velocity, and varbe its
final velocity. Let mp be the mass of the block on the right, vg; be its initial velocity, and
vprbe its final velocity. The momentum of the two-block system is conserved, so

MAVA; T MBVB; = MaVAr + mpVps
and

MV, +mgVg, —mgvp,  (1.6kg)(5.5m/s)+(2.4kg)(2.5m/s)—(2.4kg)(4.9 m/s)
m, 1.6kg

vAf =

=1.9 m/s.
(b) The block continues going to the right after the collision.

(c) To see if the collision is elastic, we compare the total kinetic energy before the
collision with the total kinetic energy after the collision. The total kinetic energy before is

K, :%mAvji +%m3v§i = %(1.6 kg) (5.5 m/s)’ +%(2.4 kg)(2.5m/s)* =31.7 J.
The total kinetic energy after is
1 2 1 2 1 2 1 2
K, :EmAvAf +Em8v3f = 5(1.6 kg) (1.9 m/s) +E(2.4 kg)(4.9m/s)” =31.7 J.

Since K; = Kythe collision is found to be elastic.
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63. (a) Let m; be the mass of the body that is originally moving, vy; be its velocity before
the collision, and visbe its velocity after the collision. Let m; be the mass of the body that
is originally at rest and v,,be its velocity after the collision. Then, according to Eq. 9-67,

m, —m,

v, =—2y .
1 1
d m+m,
We solve for m, to obtain
Vi, = Vis
m,=——=—m, .
Vip TV

We combine this with v,, =v,, /4 to obtain m, =3m,/5=3(2.0kg)/5=12kg.

(b) The speed of the center of mass is

b = my, +myv, (2.0kg) (4.0 m/s) 2.5 mfs.
m, +m, 20kg+1.2kg
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m
m+ m,
applied since that equation is designed for use when the struck particle is initially
stationary. To deal with this case (where particle 2 is already in motion), we return to the
principle of momentum conservation:

64. This is a completely inelastic collision, but Eq. 9-53 (V = v;) 1s not easily

2(41-5]) + 4(61-2))

- - - =
myvy + myv, =(m1+m2)V - V = 214

(a) In unit-vector notation, then,
V= (2.67 m/s)i + (=3.00 m/s)] .
(b) The magnitude of Vis |V |=4.01 m/s

(c) The direction of Vis 48.4° (measured clockwise from the +x axis).
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65. We use Eq 9-67 and 9-68 to find the velocities of the particles after their first
collision (at x = 0 and # = 0):

o = 201kg )6 =22 mis

U e m, YT 07 kg 7
__2my  _ 06kg _12 o
Vi e Vi T 07 ke (2.0m/s) = - m/s = 1.7m/s.

At a rate of motion of 1.7 m/s, 2xy = 140 cm (the distance to the wall and back to x= 0)
will be traversed by particle 2 in 0.82's. At¢=0.82 s, particle 1 is located at

x=(-2/7)(0.82) =23 cm,
and particle 2 is “gaining” at a rate of (10/7) m/s leftward; this is their relative velocity at
that time. Thus, this “gap” of 23 cm between them will be closed after an additional time

of (0.23 m)/(10/7 m/s) = 0.16 s has passed. At this time (=0.82 + 0.16 = 0.98 s) the two
particles are at x = (-2/7)(0.98) =—-28 cm.
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66. First, we find the speed v of the ball of mass m, right before the collision (just as it
reaches its lowest point of swing). Mechanical energy conservation (with 2 = 0.700 m)
leads to

mlgh:%mlv2 = v=4/2gh=3.7 m/s.

(a) We now treat the elastic collision using Eq. 9-67:

_mom 0.5kg—2.5kg
m, +m, 0.5kg+2.5kg

Vi, (3.7 m/s)=—-2.47 m/s

which means the final speed of the ball is 2.47 m/s.

(b) Finally, we use Eq. 9-68 to find the final speed of the block:

. 2m__ __2(05ke)

= = (3.7m/s) =1.23 m/s.
Tomi+m, 0.5kg+2.5kg

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

67. (a) The center of mass velocity does not change in the absence of external forces. In
this collision, only forces of one block on the other (both being part of the same system)
are exerted, so the center of mass velocity is 3.00 m/s before and after the collision.

(b) We can find the velocity v,; of block 1 before the collision (when the velocity of block
2 is known to be zero) using Eq. 9-17:

(my + my)veom =m; vi; + 0 = y;=12.0m/s.
Now we use Eq. 9-68 to find v,:

27’1’11
mt+ m,

Vaf = vi; =6.00m/s .
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68. (a) If the collision is perfectly elastic, then Eq. 9-68 applies

B 2m1 _ 2m1 oy _g [~
V2= m+m; Vi = m+ (200)7’1’11 Zgh B 3 2gh

where we have used the fact (found most easily from energy conservation) that the speed

of block 1 at the bottom of the frictionless ramp is+/2gh (where & = 2.50 m). Next, for
block 2’s “rough slide” we use Eq. 8-37:

1
§m2v22= AEth:_ﬁcd = ﬂkngd.

where £ = 0.500. Solving for the sliding distance d, we find that m, cancels out and we
obtain d = 2.22 m.

(b) In a completely inelastic collision, we apply Eq. 9-53: v, = vi;  (where, as

my+m,

above, v;; =\/2gh ). Thus, in this case we have v, =+2gh /3. Now, Eq. 8-37 (using the
total mass since the blocks are now joined together) leads to a sliding distance of
d =0.556 m (one-fourth of the part (a) answer).
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69. (a) We use conservation of mechanical energy to find the speed of either ball after it
has fallen a distance /. The initial kinetic energy is zero, the initial gravitational potential

energy is M gh, the final kinetic energy is 1 Mv*, and the final potential energy is zero.

Thus Mgh=1Mv* and v=,/2gh. The collision of the ball of M with the floor is an

elastic collision of a light object with a stationary massive object. The velocity of the
light object reverses direction without change in magnitude. After the collision, the ball is

traveling upward with a speed of \/2gh . The ball of mass m is traveling downward with

the same speed. We use Eq. 9-75 to find an expression for the velocity of the ball of mass
M after the collision:

_M_vai+ 2m V__M—m\/@_ 2m @:M—&n\/ﬁ'
M+m M+m

— =
MM +m M+m ™ M+m

For this to be zero, m = M/3. With M = 0.63 kg, we have m = 0.21 kg.

(b) We use the same equation to find the velocity of the ball of mass m after the collision:

m—M 2M 3M—m
y = Lah+ Pah = 2gh
m M+m & M +m & M+m &

which becomes (upon substituting M = 3m) v, . =2,/2gh . We next use conservation of

mechanical energy to find the height 4’ to which the ball rises. The initial kinetic energy
is 1mv? ,» the initial potential energy is zero, the final kinetic energy is zero, and the final

potential energy is mgh'. Thus,
2

= mgh'= h'=""1 = 4
2 S =4h.

1
—mv,
2 g

mf

With 2=1.8 m, we have #” =7.2 m.
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70. We use Eqgs. 9-67, 9-68 and 4-21 for the elastic collision and the subsequent projectile
motion. We note that both pucks have the same time-of-fall ¢ (during their projectile
motions). Thus, we have

i o _ 2m1
Ax, =v,t where Ax,=d and v, = ——— Vi
Axl =t

my—mj
where Ax;,=-2d and v, = Vi .
m+m,

Dividing the first equation by the second, we arrive at

2my Vit
n;y + nmy li
—2d mp —my

Viit
mi+my "V

After canceling vy; ¢ and d, and solving, we obtain m, = 1.0 kg
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71. We orient our +x axis along the initial direction of motion, and specify angles in the
“standard” way — so 8= +60° for the proton (1) which is assumed to scatter into the first
quadrant and ¢ = —30° for the target proton (2) which scatters into the fourth quadrant
(recall that the problem has told us that this is perpendicular to €). We apply the
conservation of linear momentum to the x and y axes respectively.

j— ' '
my, = my' cos@+m,v', cos@
—_ ' 1 ' 1
0 = mpy', sin@+m,v', sing
We are given v; = 500 m/s, which provides us with two unknowns and two equations,
which is sufficient for solving. Since m; = m; we can cancel the mass out of the equations

entirely.

(a) Combining the above equations and solving forv, we obtain

’ Vv, SIn S) s
- msing (500 m/s)sin(60°) _ .o
> sin (6-9¢) sin (90°) '

We used the identity sin @cos¢ — cos@ sing = sin (0— @) in simplifying our final
expression.

(b) In a similar manner, we find

, wsin@ (500 m/s)sin(-30°)

Vv, =— - =250 m/s .
sin (¢ —60) sin (—90°)

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

72. (a) Conservation of linear momentum implies
b - — o o
my,+mgv,=my' +myv'y.
Since m4 = mp = m = 2.0 kg, the masses divide out and we obtain

V=V, 4V, =V, =(151+30)) m/s+(—101+5])) m/s— (=51 +20 j) m/s
=(10i+157) m/s .

(b) The final and initial kinetic energies are
K —lmv'2 Jrlmv'2 —1(2 0)((—5)2 +20% +10° +152) =80x10* ]
foa T o
K. :%mvj +%mv§ =%(2.0)(152 +30% +(-10)* +5°) =13x10° I .

The change kinetic energy is then AK = —5.0 x 10” J (that is, 500 J of the initial kinetic
energy is lost).
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73. We apply the conservation of linear momentum to the x and y axes respectively.
my, = my,, cosf +m,v, cosb,
0 = my,, sin6 —m,v,, sin6,
We are givenv,, =1.20x10° m/s, 6, =64.0°and 6, =51.0°. Thus, we are left with two

unknowns and two equations, which can be readily solved.

(a) We solve for the final alpha particle speed using the y-momentum equation:

- m,v, sin6, _ (16‘0) (1'20X105)Sin(51'00) =4.15x10° m/s
1 m, sin 6, (4.00)Sin(64.0°) . .

(b) Plugging our result from part (a) into the x-momentum equation produces the initial
alpha particle speed:

_ my,, cos +m,v,  cos b,

Vi
m;
(4.00) (4.15%10°) cos (64.0°)+(16.0) (1.2x10°) cos (51.0°)
- 4.00
=4.84x10° mJs .
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74. We orient our +x axis along the initial direction of motion, and specify angles in the
“standard” way — so 0 = —90° for the particle B which is assumed to scatter “downward”
and ¢ > O for particle A which presumably goes into the first quadrant. We apply the
conservation of linear momentum to the x and y axes respectively.

4 /
MmyVy =myV, cos@+m,V, cos@

’ . ’ .
0=myvysin@+m v, sing

(a) Setting vz = v and v, = v/2, the y-momentum equation yields

v
’ : —_
m,v’, sm;/)—mBE

and the x-momentum equation yields m v/, cos@ = m,v.
Dividing these two equations, we find tan ¢ = + which yields ¢ = 27°.

(b) We can formally solve for v/, (using the y-momentum equation and the fact that
p=1/35)

, _5m,

Vi=——v

2 m,

but lacking numerical values for v and the mass ratio, we cannot fully determine the final
speed of A. Note: substituting cos¢:2/ J5 , into the x-momentum equation leads to

exactly this same relation (that is, no new information is obtained which might help us
determine an answer).
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75. Suppose the objects enter the collision along lines that make the
angles 8> 0 and ¢ > 0 with the x axis, as shown in the diagram that
follows. Both have the same mass m and the same initial speed v. k!
We suppose that after the collision the combined object moves in "
the positive x direction with speed V. Since the y component of the r
total momentum of the two-object system is conserved, "
my sin @—mv sin ¢= 0. I

This means ¢= 6. Since the x component is conserved,

2my cos 6=2mV. i
moy
We now use ¥ =v/2 to find that cos€@=1/2. This means 8= 60°. The angle between the
initial velocities is 120°.

e et R R
I
I
|
|
I
|
-
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76. We use Eq. 9-88 and simplify with v; =0, v/=v, and vye| = u.

M, M,
In—t=—l=e
P Mf

— v/u
Vf -V, =V

(a) If v=u we obtain M, =e'=27.
S

(b) If v = 2u we obtain M e 74.
Mf
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77. (a) The thrust of the rocket is given by 7 = Rv, where R is the rate of fuel
consumption and vy is the speed of the exhaust gas relative to the rocket. For this
problem R = 480 kg/s and vy = 3.27 X 10° m/s, so

T =(480kg/s)(327x10° m/s) =157 x10°N.

(b) The mass of fuel ejected is given by M, = RAt, where At is the time interval of the

burn. Thus, Mse = (480 kg/s)(250 s) = 1.20 x 10° kg. The mass of the rocket after the
burn is

M= M; — Mo = (2.55 x 10° kg ) — (1.20 x 10° kg) = 1.35 x10’ kg.

(c) Since the initial speed is zero, the final speed is given by

v, =V

rel

e (327%10°)In
M

[2.55>< 10°
f

35X 10 ]: 2.08x10° m/s.
35x%
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78. We use Eq. 9-88. Then

v, =v,+v, In M, | _105 mis+(253 mis) In | 2020 Ke
- M, 6010 kg

jleS m/s.
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79. (a) We consider what must happen to the coal that lands on the faster barge during
one minute (Af = 60s). In that time, a total of m = 1000 kg of coal must experience a
change of velocity

Av =20km/h—10km/h = 10km/h =28 m/s,

where rightwards is considered the positive direction. The rate of change in momentum
for the coal is therefore

A_f)_ mAV (1000 kg)(2.8 m/s)
At At 60s

=46 N

which, by Eq. 9-23, must equal the force exerted by the (faster) barge on the coal. The
processes (the shoveling, the barge motions) are constant, so there is no ambiguity in

A
equating A_It? with %

(b) The problem states that the frictional forces acting on the barges does not depend on
mass, so the loss of mass from the slower barge does not affect its motion (so no extra
force is required as a result of the shoveling).
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80. (a) We use Eq. 9-68 twice:

_ 2m1 . 2m1 6
V= e T (4 00 m/s) = m/s
N 2m2 B 2m2
V3 = m2+m3v2 = (16/3m/s)— m/s =711 m/s.

(b) Clearly, the speed of block 3 is greater than the (initial) speed of block 1.

(c) The kinetic energy of block 3 is
2y 16\’ 2 64
K3f m3 V3 = (E) m (?) Vii = 81 <1 Kii.

We see the kinetic energy of block 3 is less than the (initial) K of block 1. In the final
situation, the initial K is being shared among the three blocks (which are all in motion),
so this is not a surprising conclusion.

(d) The momentum of block 3 is

P3r= m3vy = 6)277’11(19_6)\’11' = gpn'

and is therefore less than the initial momentum (both of these being considered in
magnitude, so questions about * sign do not enter the discussion).
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81. Using Eq. 9-67 and Eq. 9-68, we have after the first collision

m;—mp —m 1

v - :—v .= _v .= _—v .
1f m+ m, 1i 3m, 1i 3 Vi
2m, 2m, 2
A% Vi = Vii = 3V
2f m+ m, 1i 3m, 1i 3 Vi

After the second collision, the velocities are

vy =2 =My b2 2
T mptmy T 3my 37 C
g _2ma2 4
W mtmy 2 3my 37 9N

(a) Setting vi; =4 m/s, we find v; 5 = 1.78 m/s.
(b) We see that v; 5 is less than vy; .

(c) The final kinetic energy of block 3 (expressed in terms of the initial kinetic energy of
block 1) is

2
1 2 1 16 2 64
K= 5msvs” =5 (4my) (3) Vi =¢g1 Kii .
We see that this is less than K; .

(d) The final momentum of block 3 is p3y=msvs; = (4m1)(%6)v1 > myv.
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82. (a) This is a highly symmetric collision, and when we analyze the y-components of
momentum we find their net value is zero. Thus, the stuck-together particles travel along
the x axis.

(b) Since it is an elastic collision with identical particles, the final speeds are the same as
the initial values. Conservation of momentum along each axis then assures that the
angles of approach are the same as the angles of scattering. Therefore, one particle
travels along line 2, the other along line 3.

(c) Here the final speeds are less than they were initially. The total x-component cannot
be less, however, by momentum conservation, so the loss of speed shows up as a
decrease in their y-velocity-components. This leads to smaller angles of scattering.
Consequently, one particle travels through region B, the other through region C; the paths
are symmetric about the x-axis. We note that this is intermediate between the final states
described in parts (b) and (a).

(d) Conservation of momentum along the x-axis leads (because these are identical
particles) to the simple observation that the x-component of each particle remains
constant:

Vrx =vcos@=3.06 m/s.

(e) As noted above, in this case the speeds are unchanged; both particles are moving at
4.00 m/s in the final state.
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83. (a) Momentum conservation gives

mrvg +myv, =0 = (0.500 kg) vi + (1.00 kg)(—1.20 m/s) = 0
which yields vz = 2.40 m/s. Thus, Ax = vz t = (2.40 m/s)(0.800 s) = 1.92 m.
(b) Now we have mzvg +m;(vz —1.20 m/s) = 0, which yields

L, _(2misym, (120 m/s)(1.00kg) _ oo

* m,+m,  1.00kg+0.500 kg

Consequently, Ax = vz £ = 0.640 m.
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84. Let m be the mass of the higher floors. By energy conservation, the speed of the
higher floors just before impact is

2

mgdz%mv = v=,/2gd.

The magnitude of the impulse during the impact is

J=|Ap|=m|Av|=mv=m,/2gd =mg /%zW /%
g g

where W =mg represents the weight of the higher floors. Thus, the average force exerted
on the lower floor is
_J W |2d

avg_A_t_Kt g

With F_ =sW , where s is the safety factor, we have

avg
g=b P41 260m) o0
At\ g 1.5x107 s\ 9.8m/s
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85. We convert mass rate to SI units: R = (540 kg/min)/(60 s/min) = 9.00 kg/s. In the
absence of the asked-for additional force, the car would decelerate with a magnitude
given by Eq. 9-87:

Rv,, =M]|aq|

so that if @ = 0 is desired then the additional force must have a magnitude equal to R vy
(so as to cancel that effect).

F = Rv,, =(9.00 kg/s)(3.20 m/s) = 28.8N.
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86. From mechanical energy conservation (or simply using Eq. 2-16 with a=g
downward) we obtain

v=12gh =/2(9.8 m/s>)(1.5 m) =5.4 m/s
for the speed just as the body makes contact with the ground.

(a) During the compression of the body, the center of mass must decelerate over a
distance d = 0.30 m. Choosing +y downward, the deceleration a is found using Eq. 2-16.

2 2
0=v"+2ad = a=-—=~— >4
24 2(030)

which yields a =—49 m/ s*. Thus, the magnitude of the net (vertical) force is m|a| = 49m
in SI units, which (since 49 m/s* = 5(9.8 m/s*) = 5g) can be expressed as 5mg.

(b) During the deceleration process, the forces on the dinosaur are (in the vertical
direction) F v and mg . If we choose +y upward, and use the final result from part (a), we

therefore have
Fy—mg=5mg = Fy=ob6mg.

In the horizontal direction, there is also a deceleration (from vy = 19 m/s to zero), in this
case due to kinetic friction f, =4, F, =u,(6mg). Thus, the net force exerted by the

Fvground = Vf;cz +F]3 z7mg

(c) We can applying Newton’s second law in the horizontal direction (with the sliding
distance denoted as Ax) and then use Eq. 2-16, or we can apply the general notions of
energy conservation. The latter approach is shown:

ground on the dinosaur is

O (19mis?
" 2(6)(0.6)(9.8 m/s?)

%mvf =M1, (bmg)Ax = Ax
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87. Denoting the new speed of the car as v, then the new speed of the man relative to the
ground is v — vr. Conservation of momentum requires

52w

Consequently, the change of velocity is

wvy (915 N)(4.00 m/s)

= =1.10 m/s.
W+w (2415 N)+(915 N)

Av=v—y, =
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88. First, we imagine that the small square piece (of mass m) that was cut from the large
plate is returned to it so that the large plate is again a complete 6 m X 6 m (d =1.0 m)
square plate (which has its center of mass at the origin). Then we “add” a square piece of
“negative mass” (—m) at the appropriate location to obtain what is shown in Fig. 9-75. If
the mass of the whole plate is M, then the mass of the small square piece cut from it is
obtained from a simple ratio of areas:

2
m= 2()_m M= M =9m.
6.0m

(a) The x coordinate of the small square piece is x = 2.0 m (the middle of that square
“gap” in the figure). Thus the x coordinate of the center of mass of the remaining piece is

L (—m)x _ -m(2.0 m) — 025m
M+ (—m) Om—m

(b) Since the y coordinate of the small square piece is zero, we have yom = 0.
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89. We assume no external forces act on the system composed of the two parts of the last
stage. Hence, the total momentum of the system is conserved. Let m. be the mass of the
rocket case and m, the mass of the payload. At first they are traveling together with
velocity v. After the clamp is released m. has velocity v. and m, has velocity v,.
Conservation of momentum yields

(me + mp)v = meve + myv,.

(a) After the clamp is released the payload, having the lesser mass, will be traveling at the
greater speed. We write v, = v. + v, Where vy is the relative velocity. When this
expression is substituted into the conservation of momentum condition, the result is

(mc +mp)v =my, +my, +m,y,.

Therefore,

(mc +mp)v—mpvrel (290.0 kg +150.0 kg)(7600 m/s)—(150.0 kg)(910.0 m/s)
v = =

‘ m +m, 290.0 kg +150.0 kg
=7290 m/s.

(b) The final speed of the payload is v, = v, + V1 = 7290 m/s + 910.0 m/s = 8200 m/s.
(c) The total kinetic energy before the clamp is released is

K = %(m +m, v} = %(290.0 kg+150.0 kg)(7600 m/s)* =1271x10'° J.

1

(d) The total kinetic energy after the clamp is released is

1

K =—my. +%mpv; :%(290.0 kg)(7290 m/s)’ +%(150.0 kg) (8200 mys)’

f
=1.275x%10" J.

The total kinetic energy increased slightly. Energy originally stored in the spring is
converted to kinetic energy of the rocket parts.
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90. The velocity of the object is

5=Z - i((3500—160z)i+ 2700+ 30012) =—(160 m/s)i.
dt  dt

(a) The linear momentum is p = mv = (250 kg)(—160 m/si) =(—4.0x10* kg-m/s) i.

(b) The object is moving west (our -1 direction).

(c) Since the value of p does not change with time, the net force exerted on the object is
zero, by Eq. 9-23.
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91. (a) If m is the mass of a pellet and v is its velocity as it hits the wall, then its
momentum is p = mv = (2.0 x 10~ kg)(500 m/s) = 1.0 kg - m/s, toward the wall.

(b) The kinetic energy of a pellet is
]. 2 1 _3 2 2
K=—mv’ = E(2.0>< 10~ kg)(500m/s)” =25x10°] .

(c) The force on the wall is given by the rate at which momentum is transferred from the
pellets to the wall. Since the pellets do not rebound, each pellet that hits transfers p =
1.0 kg - m/s. If AN pellets hit in time A¢, then the average rate at which momentum is
transferred is

e = %: (L0kg-m/s)(10s™") = 10N.

The force on the wall is in the direction of the initial velocity of the pellets.

(d) If At is the time interval for a pellet to be brought to rest by the wall, then the average
force exerted on the wall by a pellet is

_ P _ 1.0kg-m/s

=L = =17x10°N.
EAr 06%x107s

The force is in the direction of the initial velocity of the pellet.
(e) In part (d) the force is averaged over the time a pellet is in contact with the wall, while
in part (c) it is averaged over the time for many pellets to hit the wall. During the

majority of this time, no pellet is in contact with the wall, so the average force in part (c)
is much less than the average force in part (d).
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92. One approach is to choose a moving coordinate system which travels the center of
mass of the body, and another is to do a little extra algebra analyzing it in the original
coordinate system (in which the speed of the m = 8.0 kg mass is vy = 2 m/s, as given).
Our solution is in terms of the latter approach since we are assuming that this is the
approach most students would take. Conservation of linear momentum (along the
direction of motion) requires
mv, =my, +m,v, = (8.0)(2.0)=(4.0)v, +(4.0)v,
which leads to v, =4 —v, in SI units (m/s). We require

1 1 1 1 1 1
AK = (Emlvf +§m2v§j—5mv§ = 16= [5(4.0)\/12 +E(4.O)v§j—5(8.0) (2.0)°

which simplifies to v; =16—v; in SI units. If we substitute for v, from above, we find
(4-v) =16—v;

which simplifies to 2v; —8v, =0, and yields either vi = 0 or v; =4 m/s. If v; = 0 then v, =
4 —vy =4 m/s, and if vi =4 m/s then v, = 0.

(a) Since the forward part continues to move in the original direction of motion, the speed
of the rear part must be zero.

(b) The forward part has a velocity of 4.0 m/s along the original direction of motion.
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93. (a) The initial momentum of the car is

5, = mv, = (1400kg)(5.3m/s)] = (7400kg - m/s)]

and the final momentum is p, =(7400kg-m/ s)i. The impulse on it equals the change in

its momentum:

— ~ ~

J=p,~p,=(74x10° N-s)(i—j).
(b) The initial momentum of the car is p, = (7400 kg-m/ S)’l\ and the final momentum is
P, =0. The impulse acting on it is J= D,—D; = (—7.4><103N-s)i.

(c) The average force on the car is

-~ Ap j_(7400kg-m/s)(i—j)_ aoa
VAV 4.65 =(1600N)(i -}

and its magnitude is F,,_ = (1600N)+/2 =2.3x10°N.

avg
(d) The average force is

o —

and its magnitude is Fiye = 2.1 X 10°N.
(e) The average force is given above in unit vector notation. Its x and y components have

equal magnitudes. The x component is positive and the y component is negative, so the
force is 45° below the positive x axis.
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94. We first consider the 1200 kg part. The impulse has magnitude J and is (by our
choice of coordinates) in the positive direction. Let m; be the mass of the part and v, be
its velocity after the bolts are exploded. We assume both parts are at rest before the
explosion. Then J = m vy, so

b J J3ONs e
" m,  1200kg '

The impulse on the 1800 kg part has the same magnitude but is in the opposite direction,
so —J = myv,, where mj is the mass and v, is the velocity of the part. Therefore,

py=—d o 3ONS 67 mys,
m, 1800kg

Consequently, the relative speed of the parts after the explosion is

u=0.25m/s — (-0.167 m/s) = 0.417 m/s.
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95. We choose our positive direction in the direction of the rebound (so the ball’s initial
velocity is negative-valued ¥, = =52 m/s).

(a) The speed of the ball right after the collision is

2K . 2(1 K. L omy? .
J \/ G >\/m _ V3 Tags
w o\ m m

(b) With m = 0.15 kg, the impulse-momentum theorem (Eq. 9-31) yields

—

J=mv

—my, =(0.15kg)(3.7 m/s)—(0.15kg) (-5.2 m/s) =1.3 N s.

(c) Eq. 9-35 leads to Fay, = J/At = 1.3/0.0076 = 1.8 x 10° N.
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96. Let m,. be the mass of the Chrysler and v, be its velocity. Let my be the mass of the
Ford and vy be its velocity. Then the velocity of the center of mass is

my,+m,v, (2400 kg)(80 km/h)+ (1600 kg)(60 km/h)
v = =
o m,+m, 2400 kg +1600 kg

=72 km/h.

We note that the two velocities are in the same direction, so the two terms in the
numerator have the same sign.
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97. Let mp be the mass of the freight car and v be its initial velocity. Let m¢ be the mass
of the caboose and v be the common final velocity of the two when they are coupled.

Conservation of the total momentum of the two-car system leads to
mpvp = (mp + me)y = v= vaF/(mF +mc) .

The initial kinetic energy of the system is

1
K. = EmFV?’
and the final kinetic energy is
1 1 2.2 1 2_2
K, =—(mp +m. v’ =—(m, +m) PrVr A,
T2 2 my +mg) 2 (my +m)

Since 27% of the original kinetic energy is lost, we have K,= 0.73K;. Thus,

1 mv; (1 2]
———=(0.73)] — .
2 (mF +mc) ( ) 2 MrVr

Simplifying, we obtain m,. / (mF + mc) =0.73, which we use in solving for the mass of the

caboose:

2
me = %mF =037m, =(0.37)(318x10* kg) =118 x10* kg.
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98. The fact that they are connected by a spring is not used in the solution. We use Eq.
9-17 for v__:

com*

My, =my, +m,v, =(1.0kg)(1.7 m/s)+ (3.0 kg)¥,

COl

which yields |\72| =0.57 m/s. The direction of v, is opposite that of v, (that is, they are
both headed towards the center of mass, but from opposite directions).

www., Mohandesyar . com


http://mohandesyar.com
http://mohandesyar.com

www. Mohandesyar . com

99. No external forces with horizontal components act on the cart-man system and the
vertical forces sum to zero, so the total momentum of the system is conserved. Let m, be
the mass of the cart, v be its initial velocity, and v, be its final velocity (after the man
jumps off). Let m,, be the mass of the man. His initial velocity is the same as that of the
cart and his final velocity is zero. Conservation of momentum yields (m,, + m.)v = m.v..
Consequently, the final speed of the cart is

) = v(m, +m,) _ (2.3 m/s)(75 kg+39 kg) 67 m/s
m 39 kg

c

The cart speeds up by 6.7 m/s — 2.3 m/s = + 4.4 m/s. In order to slow himself, the man
gets the cart to push backward on him by pushing forward on it, so the cart speeds up.
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100. (a) We find the momentum p,, of the residual nucleus from momentum

conservation.

P.=D.+D.+D,, = 0=(-12x107 kg -m/s)i+(-6.4x107 kg-m/s)j+p,,

Thus, p,, = (1.2x10kg-m/s)i+(6.4x10 kg -m/s)]. Its magnitude is

1B, 1=(12X107 kg mis) +(6.4x10™ kg mis)’ =1.4x10™ kg-ms.

(b) The angle measured from the +x axis to p, . is

=23
0 = tan"! 6.4 x 10_22 kg-m/s | _ hgo.
1.2 %107 kg-m/s

(c) Combining the two equations p = mv and K =1mv’, we obtain (with p = p,, and
m=my,,)
-2 2
> (1.4x107 kg- m/s)

k=P __ =1.6x107" 7.
2m  2(5.8x107 kg)
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101. The mass of each ball is m, and the initial speed of one of the balls is v,, =2.2m/s.
We apply the conservation of linear momentum to the x and y axes respectively.

mv,; =mv,, c0s6 +mv, coso,

0=mv,,sin6 —mv,, siné,

The mass m cancels out of these equations, and we are left with two unknowns and two
equations, which is sufficient to solve.

(a) The y-momentum equation can be rewritten as, using ¢, =60°and v, =1.1 m/s,
v, sin6 = (1.1 m/s)sin 60° = 0.95 m/s.

and the x-momentum equation yields

v, cos6 = (2.2 m/s)—(1.1 m/s)cos 60°=1.65 m/s.

Dividing these two equations, we find tan@,= 0.576 which yields €, = 30°. We plug the
value into either equation and find v,, = 1.9 m/s.

(b) From the above, we have 6 = 30°, measured clockwise from the +x-axis, or
equivalently, —=30°, measured counterclockwise from the +x-axis.

(c) One can check to see if this an elastic collision by computing

2K, , 2K,

1

_ 2 2
— =y, and —==v;, +v,
m m

and seeing if they are equal (they are), but one must be careful not to use rounded-off

values. Thus, it is useful to note that the answer in part (a) can be expressed “exactly” as
Vi, :%le/g (and of course v, , =3V, “exactly” — which makes it clear that these two

1

kinetic energy expressions are indeed equal).
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102. (a) We use Eq. 9-87. The thrust is
Rv,, = Ma=(4.0x10"kg)(2.0m/s*) =8.0x10* N.

(b) Since vr; = 3000 m/s, we see from part (a) that R = 27 kg/s.
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103. The diagram below shows the situation as the incident ball (the left-most ball)
makes contact with the other two.

It exerts an impulse of the same magnitude on each ball, along the line that joins the
centers of the incident ball and the target ball. The target balls leave the collision along
those lines, while the incident ball leaves the collision along the x axis. The three dotted
lines that join the centers of the balls in contact form an equilateral triangle, so both of the
angles marked & are 30°. Let vy be the velocity of the incident ball before the collision
and V be its velocity afterward. The two target balls leave the collision with the same
speed. Let v represent that speed. Each ball has mass m. Since the x component of the
total momentum of the three-ball system is conserved,

mv, =mV +2mvcos@

and since the total kinetic energy is conserved,

lmvézlmV2+2 lmv2 .
2 2 2

We know the directions in which the target balls leave the collision so we first eliminate
J and solve for v. The momentum equation gives V' = vy — 2v cos 6, so

V? =v; —4v,v cos@+4v’ cos’ 6
and the energy equation becomes v; = v; —4v,vcos @+ 4v’ cos’ @ +2v°. Therefore,

Y cosf _ 2(10 m/s)cos30°
14+2cos’ 8 142 cos® 30°

=693 m/s.

(a) The discussion and computation above determines the final speed of ball 2 (as labeled
in Fig. 9-83) to be 6.9 m/s.

(b) The direction of ball 2 is at 30° counterclockwise from the +x axis.
(c) Similarly, the final speed of ball 3 is 6.9 m/s.

(d) The direction of ball 3 is at —30° counterclockwise from the +x axis.
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(e) Now we use the momentum equation to find the final velocity of ball 1:
V=v,—2vcos@=10 m/s—2(6.93 m/s) cos30°=-2.0m/s.
So the speed of ball 1 is |V |=2.0 m/s.

(f) The minus sign indicates that it bounces back in the — x direction. The angle is —180°.
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104. (a) We use Fig. 9-22 of the text (which treats both angles as positive-valued, even
though one of them is in the fourth quadrant; this is why there is an explicit minus sign in
Eq. 9-80 as opposed to it being implicitly in the angle). We take the cue ball to be body 1
and the other ball to be body 2. Conservation of the x and the components of the total
momentum of the two-ball system leads to:

mvy; = mviscos ) + mvyrcos 6

0 =—mvyrsin 6 + mvyssin 6.

The masses are the same and cancel from the equations. We solve the second equation for

sin 6:

v
sin@, =—sin 6, = (%m//sj §in22.0°= 0.656 .
Vy 00m/s

Consequently, the angle between the second ball and the initial direction of the first is &
=41.0°.

(b) We solve the first momentum conservation equation for the initial speed of the cue
ball.

Vi;

1

=v,, €086, +v,, cosd, =(3.50 m/s)cos 22.0°+(2.00 m/s) cos 41.0° = 4.75 m/s .

(c) With SI units understood, the initial kinetic energy is

K = lmvf = lm(4.75)2 =113m
2 2
and the final kinetic energy is
l 2 1 2 l 2 2
Ky = mvi, +omvi, = Em((3.50) +(2.00)*) =8.1m.

Kinetic energy is not conserved.
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105. (a) We place the origin of a coordinate system at the center of the pulley, with the x
axis horizontal and to the right and with the y axis downward. The center of mass is
halfway between the containers, at x = 0 and y = ¢, where ¢ is the vertical distance from
the pulley center to either of the containers. Since the diameter of the pulley is 50 mm,
the center of mass is at a horizontal distance of 25 mm from each container.

(b) Suppose 20 g is transferred from the container on the left to the container on the right.
The container on the left has mass m; = 480 g and is at x; = —25 mm. The container on
the right has mass m, = 520 g and is at x, = +25 mm. The x coordinate of the center of
mass is then

_omyx, +myx, (480 g)(—25 mm)+(520 g)(25 mm)

com =1.0 mm.
m, +m, 480 g+520¢g

X

The y coordinate is still /. The center of mass is 26 mm from the lighter container, along
the line that joins the bodies.

(c) When they are released the heavier container moves downward and the lighter
container moves upward, so the center of mass, which must remain closer to the heavier
container, moves downward.

(d) Because the containers are connected by the string, which runs over the pulley, their
accelerations have the same magnitude but are in opposite directions. If a is the
acceleration of my, then —a is the acceleration of m;. The acceleration of the center of
mass is

3 m,(—a)+mya _gmmm

a

com

m, +m2 m, +m2

We must resort to Newton’s second law to find the acceleration of each container. The
force of gravity m;g, down, and the tension force of the string 7, up, act on the lighter
container. The second law for it is m;g — T = —m;a. The negative sign appears because a
is the acceleration of the heavier container. The same forces act on the heavier container
and for it the second law is myg — T'= mya. The first equation gives 7= m;g + ma. This is
substituted into the second equation to obtain myg — m;g — mia = maa, so

a = (my—my)g/(m + my).

Thus,
“m) (98 m/s*)(520 ¢ —480 g)’
:g(m2 m12 :( m S)( g - g) =16x1072 m/s>.
(m, +m,) (480 g+520 g)

com

The acceleration is downward.
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106. (a) The momentum change for the 0.15 kg object is
Ap =(0.15)[21+3.5] 32k—(51+6.5] +4 k)] = (-0.450i — 0.450] — 1.08k) kg'm/s.
(b) By the impulse-momentum theorem (Eq. 9-31), f =A 5 , we have
J = (~0.4501 — 0.450] — 1.08k) N's.
(c) Newton’s third law implies J;an = _J;H (where Jl_o)all is the result of part (b)), so

Juat = (0.450% +0.450; + 1.08K) N's.
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107. (a) Noting that the initial velocity of the system is zero, we use Eq. 9-19 and Eq. 2-
15 (adapted to two dimensions) to obtain

A

p _lM 2_1 ﬁ.]_) 2
d _2(m1+mjt _2(0.006 (0.002)

which has a magnitude of 0.745 mm.

(b) The angle of d is 153° counterclockwise from +x-axis.

(c) A similar calculation using Eq. 2-11 (adapted to two dimensions) leads to a center of
mass velocity of v =0.7453 m/s at 153°. Thus, the center of mass kinetic energy is

Keon= 3 (my + my)v* =0.00167 J.
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108. (a) The change in momentum (taking upwards to be the positive direction) is
Ap = (0.550 kg)[ (3 m/s)j — (—12 m/s)j ] = (+8.25 kegm/s) ] .
(b) By the impulse-momentum theorem (Eq. 9-31) f =A ﬁ = (+8.25 N's)j .

- -

(c) By Newton’s third law, J. = —J, =(-8.25N's)] .
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109. Using Eq. 9-67 and Eq. 9-68, we have after the collision

_mp—m _ 067’1’11 _ 2

Y b my T Lam VY 7 (4 m/s)
. 2m1 B 2m1 _ l

Ve S e T Tam, Vi 7 (4m/s) .

(a) During the (subsequent) sliding, the kinetic energy of block 1 K, = %ml v12 is

converted into thermal form (AEw = £ m; g di). Solving for the sliding distance d; we
obtain d; = 0.2999 m = 30 cm.

(b) A very similar computation (but with subscript 2 replacing subscript 1) leads to block
2’s sliding distance d,=3.332 m = 3.3 m.
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110. (a) Since the initial momentum is zero, then the final momenta must add (in the
vector sense) to 0. Therefore, with SI units understood, we have

Ds =—D,— P, =—m, —m,,
:—(16.7><10-27)(6.00><106i)—(8.35><10-27)(—8.00><106j)

A

=(-1.00x10™{+0.67x10™ ] )kg-m/s.

(b) Dividing by m3 = 11.7 x 10" ?” kg and using the Pythagorean theorem we find the
speed of the third particle to be v3 = 1.03 x 10’ m/s. The total amount of kinetic energy is

1 1 1 _
Emlvf +Em2V22 +5m3v32 =119%x107" J.
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111. We use m; for the mass of the electron and m, = 1840m; for the mass of the
hydrogen atom. Using Eq. 9-68,
2m, 2
Vor = Vii= Vi
m, +1840m, " 1841

we compute the final kinetic energy of the hydrogen ato